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ABSTRACT Human immunodeficiency virus type 1 (HIV-1) depends on a class of
host proteins called host dependency factors (HDFs) to facilitate its infection. So far
experimental efforts have detected a certain number of HDFs, but the gene inven-
tory of HIV-1 HDFs remains incomplete. Here, we implemented an existing network-
based gene discovery strategy to predict HIV-1 HDFs. First, an encoding scheme
based on a publicly available human tissue-specific gene functional network (GIANT;
http://giant.princeton.edu/) was designed to convert each human gene into a 25,825-
dimensional feature vector. Then, a random forest-based predictive model was trained
on a data set containing 868 known HDFs and 1,736 non-HDFs. Through 5-fold
cross-validation, an independent test, and comparison with one existing method, the
proposed prediction method consistently revealed accurate and competitive perfor-
mance. The highlight of our method should be ascribed to the introduction of the
GIANT encoding scheme, which contains rich information regarding gene interactions.
By merging known HDFs and genome-wide HDF prediction results, network analysis
was conducted to catch the common patterns of HDFs in the context of the GIANT
network. Interestingly, HDFs reveal significantly lower betweenness than HIV-1-
interacting human proteins (i.e., HIV targets). In the meantime, the functional roles of
HDFs were also examined by mapping all the HDF candidates into human protein
complexes. Especially, we observed the frequent co-occurrence of HDFs and HIV targets
at the protein complex level. Collectively, we hope the proposed prediction method
not only can accelerate the HDF identification and antiviral drug target discovery, but
also can provide some mechanistic insights into human-virus relationships.

IMPORTANCE Identification of HIV-1 HDFs remains a crucial step to understand the
complicated relationships between human and HIV-1. To complement the experi-
mental identification of HDFs, we have implemented an existing network-based
gene discovery strategy to predict HDFs from the human genome. The core idea of
the proposed method is that the rich information deposited in host gene functional
networks can be effectively utilized to infer the potential HDFs. We hope the pro-
posed prediction method could further guide hypothesis-driven experimental efforts
to interrogate human–HIV-1 relationships and provide new hints for the develop-
ment of antiviral drugs to combat HIV-1 infection.

KEYWORDS HIV-1, host dependency factors, prediction, machine learning, gene
functional network

As a kind of obligate intracellular pathogens, viruses contain small genomes that
encode a limited number of proteins. To carry out their activities in host cells,

viruses need to exploit host proteins for entry, replication, and transmission. In general,
such host proteins are referred to as host dependency factors (HDFs) (1, 2). Biologically,
the characterization of HDFs remains an important step to decipher human-virus
relationships (3). In the meantime, HDFs can serve as potential antiviral drug targets.
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Indeed, such a target discovery strategy is increasingly attractive, since it can effectively
avoid drug resistance in comparison to therapeutic targeting of viral proteins (4–6).

As an infectious virus, HIV-1 continuously poses a serious threat to human health.
Mechanistic understanding of human–HIV-1 interaction has been of long-term research
interest to the community. The genome of HIV-1 encodes only 19 proteins. Conse-
quently, it has to rely on HDFs to complete its life cycle (7). In the past decades, many
experimental methods, such as small interfering RNA (siRNA)-based screens (8) and
CRISPR/Cas9-based screens (9, 10), have been explored to identify HIV-1 HDFs (11–15).
Regarding siRNA-based screens, individual human genes are first knocked down
through RNA interference, then the effects of viral infection (e.g., levels of viral protein
expression or production of viral particles in human cells) are measured to find
potential HDFs. As a novel and powerful loss-of-function technique, CRISPR/Cas9 has
also been applied to the detection of HDFs with higher sensitivity and specificity (10).
Until now, the experimentally identified HIV-1 HDFs have provided further insights into
the functional roles of HIV-1 HDFs. Moreover, the relationship between HDFs and
HIV-1-interacting human proteins (i.e., HIV targets) has been examined in the context
of human protein-protein interaction (PPI) networks (16, 17). Regarding the antiviral
drug discovery, HDF-targeted drugs have been successfully developed. For instance,
one HIV-1 HDF called CCR5 could serve as a coreceptor for HIV-1 infection of CD4� T
cells and macrophages, and small molecule inhibitors of CCR5 have been developed as
effective anti-HIV drugs (18).

Thanks to the development of experimental techniques, more and more HIV-1 HDFs
have been continuously discovered, especially with the application of CRISPR/Cas9-
based screens (2, 10). In the meantime, it has been reported that high false-negative
rates exist in previous genome-wide siRNA-based HDF screens (19). The evidence above
clearly indicates that the current catalogs of HIV-1 HDFs remain incomplete. Addition-
ally, experimental methods are often time-consuming and laborious. In this regard,
cost-effective computational methods may offer a promising alternative solution for
complementing the experimental identification of HDFs. Indeed, the available HDF data
have provided a solid foundation for the development of prediction methods. Consid-
ering the functional diversity of HDFs, conventional sequence information-based pro-
tein family prediction is not suitable for this task. Rather, network-based gene discovery
(16, 20, 21) may provide an effective alternative solution to detect HDFs. Based on the
hypothesis that the network topologies of known HDFs within human PPI networks can
be employed to detect new HDFs, Murali et al. initially predicted HIV-1 HDFs through
the introduction of a graph-theoretic approach called SinkSource (16). Recently, Ack-
erman et al. proposed a method of integrating human PPI networks with human-virus
PPIs to detect HDFs of influenza viruses (21). In addition to successfully predicting novel
HDFs, the topology relationships between HDFs and virus-interacting proteins in the
context of human PPI networks have been characterized. The aforementioned predic-
tion and analysis of HDFs indicated that the network-informed strategy is powerful for
novel HDF discovery.

In comparison to pure PPI networks, genome-wide functional networks may be
more comprehensive to represent the complex gene/protein associations within cel-
lular systems. In 2015, Troyanskaya and coworkers developed a series of tissue-specific
functional gene interaction networks through a Bayesian data integration strategy (22).
The integrated data types include thousands of PPI, gene expression, and regulatory
sequence data sets. Moreover, they have constructed a web server called GIANT
(Genome-Scale Integrated Analysis of Networks in Tissues) to make the predicted
functional gene interaction networks applicable to the community. Based on the GIANT
network, for instance, Krishnan et al. employed a machine learning approach to
conduct genome-wide prediction of autism risk genes. They successfully predicted
hundreds of autism risk gene candidates with little or no prior genetic evidence, many
of which have been experimentally validated (23).

Inspired by the successful applications of network-based gene discovery (22–25), in
this work we implemented a GIANT network-informed prediction method of HIV-1
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HDFs with the assistance of machine learning algorithms. We will elaborate the overall
computational framework, methodology details, performance assessment, and com-
parison of the proposed HDF predictor. In the meantime, we will also report the
comprehensive network and functional analyses of HDF candidates inferred from
genome-wide prediction, which will allow us to better understand the global
landscape of HIV-1 HDFs.

RESULTS AND DISCUSSION
The computational framework of the proposed network-informed HDF predic-

tion. The flowchart of the proposed prediction method is illustrated in Fig. 1. At first,
we manually collected known HDFs with experimental evidence (i.e., positive samples)
and selected non-HDFs (i.e., negative samples) through random sampling of human
genes other than known HDFs. We further compiled them into a training data set
covering 868 HDFs and 1,736 non-HDFs and an independent test set involving 276
HDFs and 552 non-HDFs. Then, the GIANT network was used to infer feature vectors for
HDFs/non-HDFs. Based on the GIANT encoding scheme, five popular machine learning
methods (i.e., random forest [RF], naive Bayesian [NB], k-nearest neighbors [KNN],
logistic regression [LR], and support vector machine [SVM]) were adopted to build the
corresponding predictive models. At last, a 5-fold cross-validation and an independent
test were carried out to select the best predictive model. More details about the data

FIG 1 Flowchart of the proposed HIV-1 HDF prediction method. In the data set preparation step, we compiled positive genes (known
HDFs) through literature searching and negative genes (i.e., non-HDFs) through random sampling of human proteins other than known
HDFs. In the feature vector construction step, we employed the T-cell-specific GIANT network to convert each positive/negative sample
into a 25,825-dimensional vector. In the model training and evaluation step, we introduced five popular machine learning methods, and
RF was selected as the optimal machine learning algorithm through the 5-fold cross-validation and independent test. Moreover, the
feature selection was conducted to rank the contributions of different features in the proposed encoding scheme. In the final step, we
conducted genome-wide HDF screening based on the proposed method, and conducted topological analysis of the HDF candidates in
the context of the GIANT network and examined the functional roles of HDF candidates in the context of human protein complexes.
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set preparation, GIANT-based feature vector construction, machine learning algorithm
implementation, and performance metrics are available in Materials and Methods.

The performance of network-based HDF prediction. In this work, a 5-fold cross-
validation and an independent test were carried out to stringently assess the model
performance of different machine learning algorithms, which were first measured
through the receiver operating characteristic (ROC) curve and the area under ROC curve
(AUC). It should be noted that for fair comparison, the parameters in different algo-
rithms were preliminarily optimized (i.e., the key parameters in each algorithm were
optimized, while other parameters were set as default). As shown in Fig. 2A, the
RF-based model performed the best (AUC � 0.751) in the 5-fold cross-validation,
followed by SVM (AUC � 0.737), LR (AUC � 0.718), KNN (AUC � 0.660), and NB
(AUC � 0.640). Figure 2B illustrates the ROC curves of the models in the independent
test. Considering that the precision-recall (PR) curve is more suitable for characterizing
the model performance with imbalanced positives and negatives, the PR curve and the
area under PR curve (AUPRC) are also provided in Fig. 2C and D. Likewise, the RF-based
model performed the best in either the 5-fold cross-validation or the independent test.
For real application, it is important to quantify the performance at a low false-positive
rate (FPR) control. At an FPR control of 10%, for instance, the corresponding sensitivity
(with precision in parentheses) values for RF, SVM, LR, KNN, and NB are 31.2% (61.7%),
28.6% (57.1%), 29.2% (55.3%), 20.9% (54.2%), and 14.8% (43.2%) in the 5-fold cross-
validation, respectively (Fig. 2A and C). Moreover, it is worth noting that the AUC/
AUPRC values from the independent test revealed reasonably decreased performance

FIG 2 Performance comparison of prediction models based on different machine learning methods. (A) ROC
curves of the 5-fold cross-validation. (B) ROC curves of the independent test. (C) PR curves of the 5-fold
cross-validation. (D) PR curves of the independent test. Parameters in parentheses in panels A and B denote the
AUC values of different models, while parameters in parentheses in panels C and D stand for the AUPRC values.
Note that the AUC/AUPRC values are reported as average � standard deviation (SD).
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in comparison to the 5-fold cross-validation, which should be ascribed to the fact that
the positive samples in the training set and independent test set were selected from
different experimental studies. Even so, different machine learning-based models
showed the same performance rank in either the 5-fold cross-validation or the
independent test, further suggesting the overall performance of these five machine
learning-based models is robust.

Considering T cells are the principal targets for HIV-1 (26, 27), our predictive model
is based on the T-cell-specific GIANT network. To demonstrate whether the predictive
model is sensitive to different tissue-specific networks, we compared the performance
of the T-cell-specific network against the networks of other tissues that are not known
HIV-1 host cells. In terms of AUC or AUPRC, the T-cell-specific network slightly outper-
formed the epidermis tissue- and adipose tissue-specific networks (Table 1), implying
the T-cell-specific network seems to have higher signal-to-noise ratio to some extent.

We also reconstructed the proposed predictive model based on a human PPI
network compiled in this study, which contains 344,703 interactions and 16,745 pro-
teins. Rather than the GIANT network, the PPI network data used here are unweighted
and tissue independent. To infer the PPI network-based encoding, the interaction score
of an interacting protein pair was set to 1.0, whereas the interaction score of a
noninteracting protein pair was set to 0.0. As shown in Table 1, the PPI network-based
model achieved an AUC value of 0.643 (AUPRC � 0.502) in the 5-fold cross-validation
and an AUC value of 0.552 (AUPRC � 0.368) in the independent test, which are much
lower than those of the corresponding counterparts in the GIANT network-based
predictive model. Likewise, we also retrained the RF model based on a systematically
integrated PPI network called InWeb_InBioMap (28), which covers 580,075 interactions
and 16,948 proteins in version 2016-09. In general, the InWeb_InBioMap model out-
performs the model based on the PPI network compiled in this work, but it is still
inferior to the GIANT network-based model (Table 1). Collectively, the above perfor-
mance comparison of the GIANT network-based model and two PPI network-based
models demonstrated that GIANT is a suitable gene network for HDF identification.

Selection of different negative data sets. It has been established that the real
ratio of HDFs to non-HDFs is highly skewed, although the exact ratio of positives to
negatives in the human genome remains elusive. To address this highly imbalanced
classification task, the ratio of positives to negatives used in training/assessing machine
learning models remains an open issue. On the one hand, models trained on balanced
samples, as widely used in many classification tasks, cannot reflect reality. On the other
hand, models trained on a highly imbalanced ratio will also inevitably generate biased

TABLE 1 Model performance based on different tissue-specific GIANT networks and PPI
networks

Network type

5-fold cross-validationa Independent testa

AUC AUPRC AUC AUPRC

GIANT networks
T cells 0.751 � 0.003 0.554 � 0.010 0.703 � 0.013 0.483 � 0.011
Adipose tissue 0.747 � 0.002 0.546 � 0.008 0.703 � 0.015 0.476 � 0.014
Epidermis tissue 0.747 � 0.002 0.552 � 0.006 0.701 � 0.025 0.468 � 0.022

PPI networks
PPI network in this studyb 0.643 � 0.004 0.502 � 0.011 0.552 � 0.020 0.368 � 0.025
InWeb_InBioMapb 0.669 � 0.006 0.501 � 0.010 0.590 � 0.014 0.390 � 0.012

aThe results are based on five different repeats of negative sample selections, which are expressed as
average � SD.

bWe used the same encoding strategy as the GIANT network to infer the compiled PPI network- or
InWeb_InBioMap-based predictive model. Since there are a total of 16,745 proteins in the compiled PPI
network, each sample can be converted into a 16,745-dimensional feature vector. Regarding the
InWeb_InBioMap PPI network, the number of proteins is 16,948, and thus each sample can be represented
as a 16,948-dimensional vector. To train and assess the compiled PPI network- or InWeb_InBioMap-based
model, note that some HDFs in the original training and independent test sets were removed since they
were not included in these two PPI networks.
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results. In this context, a relatively imbalanced ratio of positives to negatives was often
empirically adopted without strict optimization. Here, we conducted some computa-
tional analyses to investigate the different ratios of positives to negatives in model
training and assessment. Supposing that the real ratio of HDFs to non-HDFs in the
human proteome is 1:10, we trained predictive models based on four different ratios of
HDFs to non-HDFs (1:1, 1:2, 1:5, and 1:10) and assessed the performance on an
independent test set with a 1:10 ratio of HDFs to non-HDFs. By doing so, we can
roughly examine the effects of different training sample ratios in the real application.
Note that the HDFs in the training set and independent set were the same as those
used in developing our original model. As shown in Table S1 in the supplemental
material, the overall performance of RF-based models was only slightly affected by the
sample ratios in training. Comparatively, the training set with a 1:2 or 1:5 ratio of HDFs
to non-HDFs yielded better performance than the ratios of 1:1 and 1:10 (Table S1). Thus,
the above analyses confirmed that the ratio of 1:2 in this work is generally reasonable,
although it is probably not the optimal choice.

As we know, it is a challenging task to choose high-quality negative samples in
network-based gene discovery with supervised learning. For instance, one limitation of
our original negative sample construction is that some unknown HDFs are inevitably
contained in the randomly selected negative samples and introduce noise to model
training. To address this issue, we further examined the performance and biases of
choosing different negative samples, including disease-associated genes (DAGs), HDFs
from other viruses, essential genes, and genes with similar network degrees or expres-
sion levels to HDFs (see Materials and Methods for more details about the different
negative data set preparations). Similar to our original model using randomly selected
genes as negative samples, all of these new models were also trained by using RF with
a 1:2 ratio of positives to negatives, and the corresponding performance is listed in
Table 2.

Regarding choosing DAGs as non-HDFs, the levels of performance of the 5-fold
cross-validation (AUC � 0.662 and AUPRC � 0.494) and the independent test (AUC �

0.552 and AUPRC � 0.405) are reasonably decreased in comparison to the performance
of the original model. Biologically, HIV-1 HDFs tend to be DAGs. Of the known 1,144
HDFs used in our work and the initially collected 3,855 DAGs, 272 genes overlap
(hypergeometric test, P � 4.44 � 10�16). In the context of GIANT, moreover, HDFs also
share similar network topology properties with DAGs to a certain extent, which is
exemplified in the corresponding box plots of network degree distributions (see Fig. S1
in the supplemental material). Since GIANT is a weighted network, note that all the
reported network parameters in this work are also weighted, if not specified. Thus,
choosing DAGs as negative samples increased the prediction difficulty. With respect to
choosing HDFs from other viruses as negative samples, the levels of performance on
the 5-fold cross-validation (AUC � 0.625 and AUPRC � 0.435) and independent test
(AUC� 0.539 and AUPRC � 0.372) are considerably decreased in comparison to those
in the original model. Again, these results may reflect the commonality of HDFs from
different viruses. For instance, 108 out of the collected 834 influenza A virus subtype
H1N1 HDFs overlap known HIV-1 HDFs (hypergeometric test, P � 5.05 � 10�24). More-

TABLE 2 The performance of models based on different negative data set constructions

Negative data set construction

5-fold cross-validationa Independent testa

AUC AUPRC AUC AUPRC

Randomly selected genes 0.751 � 0.003 0.554 � 0.010 0.703 � 0.013 0.483 � 0.011
DAGs 0.662 � 0.007 0.494 � 0.011 0.552 � 0.009 0.405 � 0.011
HDFs from other viruses 0.625 � 0.005 0.435 � 0.008 0.539 � 0.005 0.372 � 0.005
Essential genes 0.703 � 0.003 0.554 � 0.010 0.762 � 0.005 0.654 � 0.012
Genes with similar T cell expression levels to HDFs 0.650 � 0.002 0.461 � 0.006 0.626 � 0.009 0.441 � 0.013
Genes with similar network degrees as HDFs 0.584 � 0.003 0.399 � 0.002 0.597 � 0.002 0.401 � 0.002
aThe measurements are based on five different repeats of negative sample selections, which are reported as average � SD.
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over, the commonality of HIV-1 HDFs and other viral HDFs is also reflected in their
network properties (Fig. S1).

Regarding the model using essential genes as non-HDFs, the performance on the
5-fold cross-validation and independent test is fully comparable to that of our original
model (Table 2). As we know, the essential genes perform important functional roles in
human cells and often occupy unique network positions in gene networks (29, 30). For
instance, the average network degree of essential genes is much higher than that of
known HDFs (Fig. S1). In this context, the essential genes are not suitable for being
selected as non-HDFs, although they have less chance to be HDFs. Indeed, when we
conducted genome-wide HDF identification through the model using essential genes
as negatives, 11,418 out of 25,085 human genes were predicted as HDFs when the FPR
was controlled at 5%, implying biased results have been yielded from the new model.
(Note that the prediction threshold corresponding to a 5% FPR was estimated from the
model with a 1:2 ratio of positives to negatives.) Considering the network property
differences between HDFs and essential genes, the majority of human genes tend to
have comparatively more similar network features with HDFs rather than essential
genes, and thus more human genes are prone to be predicted as HDFs.

When we further selected non-HDFs with similar network degrees to HDFs in the
GIANT network, the model performance was also dramatically decreased, as expected
(Table 2). Regarding the negative data set with similar expression levels to HDFs, the
overall performance was also much lower than that of the original model (Table 2). The
decreasing performance may be ascribed to the fact that the newly selected non-HDFs
may still share similar network properties with HDFs (Fig. S1).

Based on the above computational experiments regarding the different negative
sample constructions, we can conclude that using random proteins other than known
HDFs as negative samples is still a reasonable choice, since the network properties of
random genes can generally reflect the diversity of non-HDFs. As a network-based gene
discovery method, moreover, the prediction specificity of the proposed method is also
limited to the network properties of query proteins in the context of the GIANT
network. For instance, other proteins with similar network properties to HDFs may have
a high chance to be predicted as HDFs. We hope these pros and cons of negative
sample constructions will be taken into consideration when developing new HDF
prediction methods in the future.

Comparison of the proposed method with an existing prediction method. To
our best knowledge, the method of Murali et al. is probably the only existing bioin-
formatics method to predict HIV-1 HDFs. Therefore, it is interesting and necessary to
compare our method against Murali et al.’s method. In Murali et al.’s method, 908
positive genes and 455 negative genes were used to train and test models with 10
independent runs of 2-fold cross-validation. As a network-based prediction, their
prediction was based on a human PPI network consisting of 71,461 interactions and
9,595 proteins. The adopted SinkSource algorithm was analogous to the functional flow
algorithm, which was originally developed for protein function prediction. By following
the method description of SinkSource in reference 16, we have implemented it through
an in-house Python script. To ensure a fair performance comparison, we used the GIANT
network, the training set, and the independent test set in our work to infer and evaluate
the SinkSource-based prediction model. We compared the SinkSource-based model
and our RF model through the 5-fold cross-validation and independent test. In general,
the SinkSource-based model yielded a performance inferior to our RF model in terms
of either AUC or AUPRC (see Fig. S2 in the supplemental material). For instance, the
SinkSource-based model yielded an AUC of 0.654 and an AUPRC of 0.441 in the 5-fold
cross-validation, while the corresponding values for our RF model were 0.751 and 0.554.

To complement the aforementioned performance comparison, we also attempted to
retrain our model on the basis of the training data set used in Murali et al.’s method. To this
end, we first compiled a training set containing 868 HDFs (positive samples) and 434
human essential genes (negative samples). Note that the newly compiled training set
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is slightly different from the original training set of Murali et al., since some genes in
Murali et al.’s data set did not occur in the GIANT network. Then, we retrained the
predictive model based on the GIANT network encoding scheme and assessed the
performance through the same 10 independent runs of 2-fold cross-validation. Finally,
we compared the corresponding AUC values to roughly assess these two methods.
Again, our method (AUC � 0.737 and AUPRC � 0.859) achieved better performance
than Murali et al.’s method (AUC � 0.658 and AUPRC � 0.732, which were retrieved
from reference 16), further suggesting that the GIANT network-informed HDF discovery
is very competitive in comparison to Murali et al.’s method.

Murali et al.’s method and our method can be classified into two different types of
network-based gene classification. As reported by Liu et al. (25), Murali et al.’s method
belongs to a class of methods referred to as “label propagation,” while our RF-based
method belongs to another class of methods called “supervised learning.” Although
“supervised learning” is applied far less frequently than “label propagation” for
network-based gene discovery (25), we have clearly demonstrated the promising
performance of the proposed RF model in predicting HDFs. Apart from the method-
ological difference, it is also worth mentioning the different choices of negative
samples in these two methods. Our method used random genes that are not HDFs as
negative samples, while Murali et al. used essential genes as negative samples. Al-
though most of the essential genes are unlikely to be HDFs, the unique network
properties of essential genes may generate model bias. As discussed in the previous
section, the randomly selected negative samples seem to be more suitable in devel-
oping the proposed RF-based predictive model.

Important features contributing to the prediction of HDFs. In general, the
GIANT-based encoding scheme is of high dimensionality (i.e., 25,825 dimensions). In
order to obtain a more optimized feature vector subset, the feature selection algorithm
adopted in RF (i.e., the Gini algorithm) was conducted to reduce the dimensions to
1,047 (see Fig. S3 in the supplemental material). With these 1,047 top-ranked features,
the corresponding RF model yielded an AUC value of 0.744 in the 5-fold cross-
validation, which is very close to the performance based on the original GIANT-based
encodings (AUC � 0.751). Although the feature selection did not result in performance
improvement, it has rendered the model more concise and has allowed us to investi-
gate the important features contributing to the prediction. The overlaps among the
1,047 genes corresponding to these 1,047 features (i.e., the top important genes for
prediction), known HDFs, and HIV targets are shown in Fig. 3A. Interestingly, the top
important genes for prediction significantly overlap HIV targets (Fig. 3A; hypergeomet-
ric test, P � 1.44 � 10�10). We further examined the top important genes in the context
of GIANT network. The results showed these top important genes tend to be signifi-
cantly closer to known HDFs/HIV targets in comparison to other human proteins
(Fig. 3B; Wilcoxon test, P � 7.05 � 10�8 and P � 2.2 � 10�16, respectively). Collectively,
these top important genes for prediction tend to be known HIV targets or neighbors of
known HDFs/HIV targets, which may partly explain why the GIANT network is infor-
mative in distinguishing HDFs from non-HDFs.

Genome-wide screening of HDFs. We used the proposed method to conduct
genome-wide HDF screening. In brief, we used the corresponding five predictive
models established by the 5-fold cross-validation to screen potential HDFs in the
human genome. For each human protein, the final predicted score was averaged over
the corresponding prediction scores from the five predictive models. Based on the final
prediction scores, we ranked the 24,681 genes in the human genome, except 1,144
known HDFs. When the false-positive rate (FPR) was controlled at 5%, 857 HDF
candidates were predicted. Note that the threshold corresponding to 5% FPR was
estimated from the 5-fold cross-validation on the training set (ratio of positives to
negatives � 1:2). In order to understand the characteristics of HDFs more comprehen-
sively, we merged the predicted 857 HDF candidates and experimentally determined
1,144 HDFs into a data set containing 2,001 HDFs (see Data Set S1, sheet 1, in the
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supplemental material), which were collectively referred as HDF candidates in the
subsequent analysis. It is worth noting that 423 out of these 2,001 HDF candidates are
known HIV-targets, which is in line with previous observations that HDFs and HIV
targets are strongly intertwined (16, 17).

Network analysis of experimentally validated and predicted HDFs. To under-
stand the network patterns of HDFs at a larger scale, we conducted network topology
analyses of these 2,001 HDFs in the context of the GIANT network. We measured each
HDF’s degree, betweenness, closeness centrality, and clustering coefficient in the GIANT
network (Fig. 4). In brief, each gene in the network was regarded as a node and the
edge was defined in case two genes are interacting. The degree of a gene denotes the
number of the edges adjacent to the gene. The betweenness of a gene is defined as
the proportion of the shortest paths between the interacting gene pairs that go
through the node of interest. The closeness centrality of a gene is defined by the
inverse of the average length of the shortest paths to all the other genes in the
network. The clustering coefficient of a gene measures its local clustering within the
GIANT network, which is defined as the number of existing edges between its neigh-
boring genes divided by the maximal number of possible edges between its neigh-
boring genes. Compared with other human genes, these 2,001 HDFs have significantly
higher indicators in terms of degree, betweenness, closeness centrality, and clustering
coefficient (Fig. 4; Wilcoxon test, all P values are �2.20 � 10�16). These network pat-
terns indicated that HDFs are more likely to be hubs, bottlenecks, and centrally located
in the GIANT network, which are very important to perform their functional roles. For
instance, HDFs can control the information flow between nodes since they have many
interacting partners and are located in the shortest paths between any two genes,
which can probably explain why HDFs can help viruses effectively infect the host
from the perspective of network biology.

For the purpose of comparison, we also calculated the corresponding network
property distributions for experimentally known HDFs and HIV targets. Briefly, the
experimentally known HDFs revealed significantly different network properties with
other proteins or HIV targets (Fig. 4; Wilcoxon test, all P values are �2.20 � 10�16).
When the predicted HDFs were taken into account, the predicted and known HDFs (i.e.,
the 2,001 HDFs) tended to have similar results for network degree, closeness centrality,
and clustering coefficient with HIV targets (Fig. 4). Compared with Murali et al.’s work,

FIG 3 The relationships among top important genes for prediction, known HDFs, and HIV targets. (A)
Venn diagram showing the overlaps among top important genes for prediction, known HDFs, and HIV
targets. (B) Box plots showing the network distance between top important genes for prediction and
known HDFs/HIV targets. For comparison, 2,000 human proteins other than known HDFs or HIV targets
were randomly selected and compiled as a data set called “others.” Different lowercase letters indicate
significant differences (P � 0.05), which were determined by one-tailed Wilcoxon rank sum test.
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the current network analysis further quantified the network property difference be-
tween HDFs and HIV targets. For instance, the 2,001 HDFs still reveal a significantly
lower betweenness in comparison to HIV targets (Fig. 4B; Wilcoxon test, P � 0.0227),
indicating that betweenness may serve as a potential indicator to further distinguish
HDFs and HIV targets.

Functional analysis of HDFs in the context of human complexes. Proteins are
usually assembled into complexes and act as molecular machines to perform their
functional roles (31). A protein complex contains multiple functionally diversified
proteins (subunits). Previous studies have shown that viruses regulate the biological
processes of host cells by manipulating host protein complexes (1, 7, 32). To conduct
a large-scale investigation of HDFs in the context of human complexes, we collected all
human protein complexes from a database of mammalian protein complexes called
CORUM (33) and calculated the intersection of all HDF candidates and all proteins

FIG 4 Comparison of topological parameters among HDF candidates (i.e., predicted and known HDFs), known
HDFs, HIV targets, and other human proteins. Note that “others” denotes 2,000 randomly selected human proteins
other than known HDFs or HIV targets. Panels A to D show the distributions of degree, betweenness, closeness, and
the clustering coefficient, respectively. The red diamond stands for the average value. Different lowercase letters
indicate significant differences (P � 0.05) determined by one-tailed Wilcoxon rank sum test.

Fu et al.

November/December 2020 Volume 5 Issue 6 e00960-20 msystems.asm.org 10

 on N
ovem

ber 4, 2020 at C
H

IN
A

 A
G

R
IC

U
LT

U
R

E
 U

N
IV

E
R

S
IT

Y
http://m

system
s.asm

.org/
D

ow
nloaded from

 

https://msystems.asm.org
http://msystems.asm.org/


participating in complexes. The results indicated that the intersection is significant
(hypergeometric test, P � 7.20 � 10�223), indicating that protein complexes are more
likely to contain HDFs than randomly selected proteins (Fig. 5A). The preference for
HDFs allows viruses to be more efficient in manipulating the corresponding complexes.
Note that the experimentally known HDFs were also observed to significantly overlap
proteins participating in complexes (Fig. 5B; hypergeometric test, P � 1.23 � 10�62).

Moreover, Fisher’s exact test was used to calculate the significance of complexes
enriched with HDF candidates. The inferred P values were further corrected to q values
(false-discovery rate) by the Benjamini and Hochberg method (34). In total, 585 of 2,824
complexes were observed to be significantly enriched with HDFs (q � 0.05). It is worth
mentioning that 348 of these 585 complexes are also enriched with HIV targets (Data
Set S1, sheet 2), further suggesting that HDFs and HIV targets are intertwined. The top
20 complexes enriched with HDFs are listed in Table 3, and all of them are enriched
with HIV targets as well. For comparison, we only detected 53 complexes enriched with
experimentally known HDFs (Data Set S1, sheet 3), which is far less than the number of
complexes enriched with the 2,001 HDF candidates. It is worth mentioning that the
number of enriched small complexes (i.e., those with �5 subunit members) was
dramatically decreased when only taking the experimentally known HDFs into account.

FIG 5 Venn diagrams showing the overlaps among HDFs, proteins in complexes, and HIV targets. (A)
HDF candidates cover predicted and known HDFs. (B) HDFs only account for known HDFs.

TABLE 3 Top 20 protein complexes enriched with HDFs

Complex
ID Complex name

No. of
proteins

No. of
HDFs q value

No. of HIV
targets

351 Spliceosome 143 81 2.50 � 10�49 52
1181 C complex spliceosome 80 46 4.62 � 10�28 35
193 PA700-20S-PA28 complex 36 28 2.13 � 10�22 20
181 26S proteasome 22 18 7.46 � 10�15 18
2825 BRCA1-RNA polymerase II complex 26 19 3.29 � 10�14 22
103 RNA polymerase II holoenzyme complex 24 18 7.88 � 10�14 22
2685 RNA polymerase II (RNAPII) 17 14 1.23 � 10�11 16
2755 17S U2 snRNP 33 19 1.29 � 10�11 15
32 PA700 complex 20 15 1.29 � 10�11 7
1332 Large Drosha complex 20 15 1.29 � 10�11 14
194 PA28gamma-20S proteasome 15 13 1.61 � 10�11 14
1183 CDC5L complex 30 18 1.61 � 10�11 14
2686 BRCA1-core RNA polymerase II complex 13 12 2.47 � 10�11 12
192 PA28-20S proteasome 16 13 6.56 � 10�11 13
191 20S proteasome 14 12 1.39 � 10�10 13
104 RNA polymerase II core complex 12 11 2.40 � 10�10 12
1335 SNW1 complex 18 12 1.87 � 10�8 12
728 CSA-POLIIa complex 13 10 5.72 � 10�8 11
3040 Multisynthetase complex 11 9 1.45 � 10�7 11
726 DDB2 complex 12 9 4.90 � 10�7 11
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For instance, 348 small complexes were enriched with the 2,001 HDFs, while the
number is only 10 for the experimentally known HDFs. We hope the incorporation of
newly predicted HDFs can allow us to catch the relationship between HDFs and host
complexes more comprehensively.

Indeed, the majority of the top 20 complexes enriched with the 2,001 HDFs are
consistent with previous observations regarding the functional roles of HDFs associated
with HIV-1 infection, which are exemplified as follows. For instance, HDFs are signifi-
cantly presented in the spliceosome complex (q � 2.50 � 10�49). Of the 143 proteins
in the spliceosome complex, 81 are HDFs. This suggests that many HDFs regulate viral
infection by participating in mRNA splicing, which allows HIV-1 to prevent host
downstream immune responses by inhibiting the production of the spliceosome. The
proteasome is an important component of the ATP-dependent proteolytic pathway
and regulates the degradation of most cellular proteins. It has been common knowl-
edge that the proteasome is involved in HIV-1 replication. The proteasome is required
for the release and maturation of infectious HIV-1 particles (35). Thus, HDFs were
observed to be enriched in several proteasome-related complexes. SNW1 is a highly
conserved protein complex associated with splicing and transcription. SNW1 is
recruited by HIV-1 Tat to Tat:P-TEFb:TAR RNA complexes and is involved in Tat
transcription by recruitment of MYC, MEN1, and TRRAP to the HIV-1 Tat-activated
long terminal repeat (LTR) promoter, thereby overcoming the suppression of
transcription elongation by negative elongation factors and stimulating transcrip-
tional replication (36). Consistent with König et al.’s work, we observed the SNW1
complex is enriched with HDFs.

In addition, we also discovered some complexes whose associations with HIV-1
HDFs had been rarely reported. For instance, RNA polymerase II catalyzes the transcrip-
tion of DNA to synthesize mRNA. Obviously, HDFs regulate transcription to be primarily
involved in the maintenance of viral latency, which is a crucial step in the life cycle of
HIV-1. In the large Drosha complex, 15 of the 20 proteins are HDFs (q � 1.29 � 10�11),
in which 11 HDFs are newly predicted and 4 HDFs are known HDFs. Drosha, a nuclease
of the RNase III family, executes the initiation step of microRNA (miRNA) processing in
the nucleus as the core nuclease, which can cleave primary miRNAs (pri-miRNAs) to
release pre-miRNAs. Pre-miRNAs are processed into mature miRNAs, which play a role
in regulating HIV-1 replication and infection (37–39).

Note that Murali et al. also examined the functionality of HDFs by seeking the
locations of HDFs in the clusters of the human PPI network through a network graph
clustering algorithm. Although the analysis strategy is different from ours, both studies
share the same motivation of understanding the functional roles of HDFs from com-
plexes or network clusters. Interestingly, some common clusters or complexes were
identified. For instance, the identified spliceosome and proteasome complexes in our
work are also related to the top 10 clusters highly connected with HDFs, as reported in
Murali et al.’s work. Taken together, the aforementioned functional analysis of HDFs in
the context of human complexes not only recapitulates known biology regarding
human-HIV-1 interaction but also provides some hints to interrogate the functional
roles of HDFs as well as the associated human complexes.

To complement the complex-based functional analysis of HDFs, we used DAVID (40)
to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses on the 2,001 HDF candidates. Here, we only took the GO
category of biological process into account. REVIGO (41) was further employed to
remove the redundancy of enriched GO terms. Likewise, a P value inferred from Fisher’s
exact test was further corrected to the q value by the Benjamini and Hochberg method
(30). Thus, a total number of 41 GO terms were enriched (q � 0.05 [the complete GO
terms are available in Table S2 in the supplemental material]), the top 20 of which are
displayed in Fig. 6A. Similarly, 23 enriched KEGG pathways of the 2,001 HDF candidates
were also inferred (q value of �0.05 [Fig. 6B]). In general, the GO/KEGG enrichment
analysis has allowed us to understand the biological functions of HDFs more com-
pletely. For instance, we observed that HDFs are heavily associated with the spliceo-
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some, proteasome, RNA polymerase II, and cell cycle through the functional annota-
tions of GO/KEGG (Fig. 6A and B), which are consistent with previous functional analysis
of enriched complexes to a large extent.

Web server implementation. To facilitate the research community, a simple web
server called HDFP for managing and searching the 2,001 HIV-1 HDF candidates has
been made freely accessible at http://zzdlab.com/HDFP. The web server was imple-

FIG 6 Functional enrichment analyses of the 2,001 HDF candidates. (A) GO enrichment analysis. (B) KEGG pathway enrichment analysis.
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mented with CentOS 7.4 and MySQL. It can display information about these 2,001 HDF
candidates, including Entrez IDs, UniProt IDs, gene symbols, PubMed IDs, and predic-
tion scores. Users can download all the detailed information regarding these 2,001 HDF
candidates in an Excel or PDF format. Moreover, the source code of the proposed RF
model, the training data set, and the independent test set used in this work are also
downloadable through the web server.

Conclusions. In this work, we implemented an existing network-based gene dis-
covery method to predict new HIV-1 HDF candidates from the GIANT network. The
interaction scores of gene pairs in the GIANT network were used to construct the
feature vectors of HDFs/non-HDFs. By applying the RF algorithm, we constructed an
HDF predictor with reasonably good performance. Further comprehensive analyses on
the combination set of experimentally determined HDFs and genome-wide predicted
HDFs not only recapitulated the known knowledge regarding HIV-1 HDFs, but also
provided further insights into the relationship between HDFs and HIV targets in the
context of the GIANT network. In particular, HDFs revealed a significantly lower
betweenness than HIV targets, although their network properties are generally similar
when both experimental and predicted HDFs are taken into account. We further
observed that the HDFs and HIV targets are highly intertwined, and they frequently
co-occurred at the protein complex level, suggesting that this is an important avenue
to decipher viral infection from the complexes enriched with HDFs. Taken together, our
current results demonstrate that the GIANT network contains rich information regard-
ing gene interactions and thus can be effectively employed for HDF identification. We
hope the predicted HDF candidates can further guide hypothesis-driven experimental
efforts to interrogate human–HIV-1 relationships.

MATERIALS AND METHODS
Data sets. We collected 1,144 experimentally determined HIV-1 HDFs in total. A total of 868 of these

1,144 HDFs were compiled from three high-throughput HDF screening studies, including those by Brass
et al. (13), König et al. (14), and Zhou et al. (15), which constituted the positive samples in our training
data set. The remaining 276 known HDFs, collected through searching literature published from 2008 to
2017, were used to constitute the positive samples in the independent test set. Those human proteins
other than known HDFs were randomly sampled as non-HDFs (negative samples). Considering the
number of non-HDFs in the human genome should be much larger than that of HDFs, the ratio of
positive to negative samples was set to 1:2 to build/assess a predictive model. Thus, we obtained a
training data set containing 868 HDFs and 1,736 non-HDFs and an independent test set containing 276
HDFs and 552 non-HDFs. Since the negative data were much more available, we also repeated the
selection of negative samples five times to investigate the robustness of model performance perturbed
by the selection of negative samples. The full list of HDFs and non-HDFs in the five groups of training
data sets and independent test sets is available in Data Set S1, sheet 4, or at http://zzdlab.com/HDFP.

For comparison, we also adopted five different ways to construct negative data sets. First, we used
DAGs other than known HDFs as non-HDFs. To do so, we collected 3,855 DAGs from the OMIM database
(https://omim.org/). After filtering out DAGs associated with known HDFs and HIV, 3,697 DAGs were
retained, 2,288 of which were randomly selected as non-HDFs. Second, through literature searching we
collected 5,506 HDFs from 11 other viruses, including influenza A virus subtype H1N1, human papillo-
mavirus, dengue virus, hepatitis C virus, etc. After removing the same genes as HIV-1 HDFs, 5,365 HDFs
from these 11 other viruses were retained and were randomly selected as negative samples. Third, we
collected essential genes from three publications (42–44). After removing the redundancy, 2,290 essen-
tial genes were compiled, which were further used to construct negative samples. Moreover, proteins
with a similar network degree to HDFs in the GIANT network were also selected as negative samples. For
each HDF, we randomly selected two human proteins with similar degrees. By doing so, a negative data
set was compiled, and the statistical test confirmed that the degree distributions between HDFs and the
newly obtained negatives are similar (Kolmogorov-Smirnov test, P � 0.05). Finally, we also randomly
chose genes with similar expression levels to HDFs to construct negative samples. To this end, we
downloaded a set of T cell microarray data (accession no. GSE73968) (45) from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/). The expression level for each gene was further averaged by three
replicates. For each HDF, two genes other than known HDFs but sharing similar expression values to the
query HDF were randomly selected, and thus a negative gene set sharing similar expression levels to
HDFs was obtained (Kolmogorov-Smirnov test, P � 0.05). Note that the different methods of non-HDF
selections described above were also repeated five times to ensure the robustness of performance
comparison.

Experimentally validated human–HIV-1 PPI data were collected from HPIDB 2.0 (46). After PPIs
containing proteins without UniProt IDs were filtered, 1,638 human–HIV-1 PPIs between 1,142 human
proteins and 19 HIV-1 proteins were obtained. We obtained 2,916 original protein complexes from
CORUM (http://mips.helmholtz-muenchen.de/corum/) and filtered out complexes containing less than

Fu et al.

November/December 2020 Volume 5 Issue 6 e00960-20 msystems.asm.org 14

 on N
ovem

ber 4, 2020 at C
H

IN
A

 A
G

R
IC

U
LT

U
R

E
 U

N
IV

E
R

S
IT

Y
http://m

system
s.asm

.org/
D

ow
nloaded from

 

http://zzdlab.com/HDFP
https://omim.org/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73968
https://www.ncbi.nlm.nih.gov/geo/
http://mips.helmholtz-muenchen.de/corum/
https://msystems.asm.org
http://msystems.asm.org/


two subunits or complexes whose subunit members had unreviewed UniProt IDs. Thus, 2,824 complexes
were retained. Experimentally determined human PPIs were collected from BioGRID (47), IntAct (48), and
DIP (49). In total, 344,703 human PPIs covering 16,745 proteins were obtained to compile a human PPI
network.

GIANT encoding. GIANT provides tissue-specific interaction maps, which can be downloaded from
http://giant.princeton.edu/. In each tissue-specific network, the interaction probability for any gene
pair is assigned. Considering the principal targets of HIV-1 are T cells, we used the T-cell-specific
GIANT network to infer the feature vectors of HDFs and non-HDFs. For each HDF/non-HDF, the
interaction probabilities with the 25,825 genes in the network were extracted to constitute the
corresponding feature encoding. Thus, each HDF/non-HDF can be converted into a 25,825-
dimensional feature vector.

Machine learning algorithms. In this work, we trained our predictive models through five com-
monly used machine learning algorithms (RF, SVM, LR, KNN, and NB), which were implemented in Python
with the package scikit-learn (50). RF is an ensemble machine learning algorithm, which creates a forest
of random uncorrelated decision trees to achieve the best possible result. SVM implements classification
by mapping low-dimensional-input features into a high-dimensional space through a kernel function. LR
is a generalized linear model, which constructs a regression model to estimate the probability of a binary
classification by considering the relationships among multiple independent variables. The core idea of
KNN is that if the majority of the k most neighboring genes in a feature space belong to a certain
category, the query sample should also belong to this category. NB is a Bayes theorem-based algorithm
with independent assumptions among input features. Here, we used Gaussian NB to allow training
models with noninteger input features (51). We utilized MinMaxScaler in scikit-learn to conduct feature-
wise standardization on the training data and applied the same transformation on the test set. In each
algorithm, the most commonly used parameters were optimized through 5-fold cross-validation, while
the other parameters were set as the default. More details about the parameter selection and optimi-
zation are available in Table S3 in the supplemental material.

Performance assessment. In this work, a 5-fold cross-validation and an independent test were
employed to assess the predictive models. We used ROC curves to characterize the performance of our
predictive model and further quantified the overall performance by the AUC value (52). In the meantime,
the PR curve and the corresponding AUPRC value were also used to estimate the performance, which is
commonly employed when the positive and negative samples are imbalanced. Briefly, an ROC curve
plots a true-positive rate (TPR) against the FPR at different thresholds, whereas a PR curve plots precision
values at different recall controls. The definitions of TPR (i.e., sensitivity or recall), FPR (i.e., 1 � specificity),
and precision are as follows:

TPR � sensitivity � recall �
TP

TP � FN

FPR �
FP

TN � FP
� 1 �

TN

TN � FP
� 1 � specificity

precision �
TP

TP � FP

where TP, FP, TN, and FN denote the number of true-positive, false-positive, true-negative, and false-
negative instances, respectively. In general, the closer the value of AUC/AUPRC is to 1, the more powerful
the predictive performance is. All ROC/PR curves were generated by the ROCR package in R (53).

Implementation of the SinkSource algorithm. To compare our method with Murali et al.’s work,
we implemented the SinkSource algorithm through a Python script by following the methodological
details reported in references 16 and 54. Briefly, we represented the GIANT network as a weighted graph,
G � (V, E), in which V denotes the set of nodes (i.e., genes) and E stands for the set of edges (i.e.,
interactions). We used wuv to denote the weight of the edge (u, v) (i.e., the interaction probability for the
edge in the GIANT network). We grouped V into three subsets, VP, VN, and V0. VP is the set of HDFs
(positive samples), VN is the set of non-HDFs (negative samples), and V0 is the remaining set of nodes
(unlabeled samples). For each node, v�V0, our task was to assess whether v should be classified as VP or
VN. To address this issue, SinkSource constructed a function, f: V¡[0, 1], where f(v) � 1 for each node in
VP, f(v) � 0 for each node in VN, and f(v) for unlabeled nodes is “smooth” over G (16). Then, SinkSource
assigned values for unlabeled nodes in V0 that minimize the function

S(G, f) � �
(u,v)�E

wuv[f(u) � f(v)]2

given that the values of positive and negative nodes are fixed (16). The value of f(v) at each unlabeled
node is defined as a weighted average of its neighboring nodes (16):

f(v) �
� u�Nv

wuvf(u)

� u�Nv
wuv

where Nv is the set of neighboring nodes of v. SinkSource used an iterative strategy to compute f(v). Let
ft�v� be the value of node v at iteration step t. Note that f0�v� � 0 for each unlabeled node. We iteratively
computed ft�v� for every unlabeled node until either it satisfied with

�v�V0 |ft(v) � ft�1(v)|� T

(T � 0.1 was set in our work) or 200 maximal iteration steps were reached. When the calculation
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terminated, the corresponding value of f(v) for each unlabeled node was obtained, and its label (VP or
VN) can be further predicted.

We followed the strategy reported in reference 54 and removed edges with low interaction
probability in the GIANT network to reduce the putative noise. Specially, an interaction probability of
�0.15 was used to narrow down GIANT to a filtered network with 19,556 nodes and 3,052,895 edges.

Calculation of network topological parameters. The topological parameters (i.e., degree, network
distance, betweenness, closeness centrality, and clustering coefficient) for genes in the GIANT networks
were measured using the igraph package in R (55). Since GIANT is a fully connected weighted
network, we only retained the top 0.1% of the edges after the network edge weight ranking for the
convenience of network topology analysis. Thus, the GIANT network was converted into a network
containing 333,452 edges. Regarding the calculations of degree and clustering coefficient, the
interaction probability of each edge was assigned as the weight, whereas the parameter (1 �
interaction probability) of each edge was assigned as the weight to infer network distance,
betweenness, and closeness centrality.
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