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Identifying human-virus protein-protein interactions (PPIs) is an essential step for
understanding viral infection mechanisms and antiviral response of the human host.
Recent advances in high-throughput experimental techniques enable the significant
accumulation of human-virus PPI data, which have further fueled the development
of machine learning-based human-virus PPI prediction methods. Emerging as a very
promising method to predict human-virus PPIs, deep learning shows the powerful
ability to integrate large-scale datasets, learn complex sequence-structure relationships
of proteins and convert the learned patterns into final prediction models with high
accuracy. Focusing on the recent progresses of deep learning-powered human-virus
PPI predictions, we review technical details of these newly developed methods,
including dataset preparation, deep learning architectures, feature engineering, and
performance assessment. Moreover, we discuss the current challenges and potential
solutions and provide future perspectives of human-virus PPI prediction in the coming
post-AlphaFold2 era.

Keywords: human-virus protein-protein interactions, machine learning, deep learning, transfer learning,
prediction

INTRODUCTION

Currently, viral infection is a major factor threatening human health and global economic
development (Qiu et al., 2017; Rasul, 2020; Lu and Peng, 2021). For instance, the current
pandemic disease of novel coronavirus pneumonia, induced by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), has caused nearly 280 million confirmed cases and
more than 5 million deaths worldwide by the end of 2021.1 Viruses invade host cells and
complete their own life cycle by exploiting the host’s molecular machinery, which is largely
determined by virus-host protein-protein interactions (PPIs) (Jean Beltran et al., 2017). Therefore,
systematic characterization of human-virus protein interactions can help to decipher viral infection
mechanisms and provide new leads for antiviral drug discovery and vaccine development.
Experimental techniques [e.g., yeast two-hybrid (Y2H) assays (Calderwood et al., 2007; Tripathi
et al., 2010; Rozenblatt-Rosen et al., 2012) and affinity purification coupled with mass spectrometry
(AP-MS) (Shah et al., 2018; Gordon et al., 2020; Li et al., 2021; Stukalov et al., 2021)] have
determined a great amount of human-virus protein interactions. Despite such tremendous progress

1https://covid19.who.int/
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in the last decades, human-virus interactomes are still far from
complete, while existing interaction data usually focus on some
well-studied virus species (Lian et al., 2021).

To complement experimental methods, many computational
methods have been developed to automatically predict PPIs
between human host and various viruses. Existing prediction
methods include interolog mapping (Yu et al., 2004; Yang
et al., 2021a), domain-domain/motif interaction-based inference
(Dyer et al., 2007; Evans et al., 2009; Chiang et al., 2017;
Zhang et al., 2017), structure-informed method (de Chassey
et al., 2013; Lasso et al., 2019) and machine learning (ML)-
based prediction (Dyer et al., 2011; Barman et al., 2014; Yang
et al., 2020). For more information on these computational
methods, see the reviews (Mariano and Wuchty, 2017; Lian
et al., 2021). With the accumulation of experimental PPIs, ML-
based methods have been increasingly popular to predict human-
virus PPIs. Briefly, ML-based methods train a binary classifier
using known human-virus PPI data to predict interacting
protein pairs from query samples. Traditional ML methods,
such as support vector machines and random forests, have
been used extensively and achieved reasonable performance
(Emamjomeh et al., 2014). As an important branch of ML, deep
learning (DL) has been successfully applied to predict intra-
species protein interactions (Du et al., 2017; Hashemifar et al.,
2018; Li et al., 2018; Chen et al., 2019). Very recently, several
DL architectures have been developed to predict human-virus
PPIs with favorable performance compared to traditional ML
methods (Lanchantin et al., 2021; Liu-Wei et al., 2021; Tsukiyama
et al., 2021; Yang et al., 2021b). In this review, we provide an
overview of dataset construction, model architectures, feature
engineering and performance assessment of DL in human-virus
PPI identification (Figure 1A). In particular, we also discuss the
technical challenges and future directions of this exciting topic in
the coming era of post-AlphaFold2 (Jumper et al., 2021).

DATASET CONSTRUCTION OF
HUMAN-VIRUS PROTEIN-PROTEIN
INTERACTION PREDICTION

Positive Sample Selection and Filtering
The construction of training/test datasets, including positive and
negative samples, is the first important step in developing a DL-
based predictor. Generally, positive samples are experimentally
determined human-virus PPIs, which can be collected from
public database resources such as HPIDB (Ammari et al.,
2016) and HVIDB (Yang et al., 2021a), or directly adopted
from literature. Considering that experimental results may
contain false positives, the obtained positive data should be
further filtered according to various strategies. Both LSTM-PHV
(Tsukiyama et al., 2021) and DeepViral (Liu-Wei et al., 2021)
downloaded human-virus PPIs from HPIDB and only retained
interactions with a significant MI score (a confidence score of
molecular interactions) (Villaveces et al., 2015). In our previous
works [i.e., TransPPI (Yang et al., 2021b) and doc2vec + RF
(Yang et al., 2020)], we excluded interactions from large-scale
MS experiments that have been experimentally detected only

once to obtain a high-quality positive dataset. DeepVHPPI
(Lanchantin et al., 2021) directly used the compiled dataset of
our previous doc2vec + RF method (Yang et al., 2020). Still, the
selection of high-confidence interactions is usually met with a
tradeoff strategy between training data set size and quality as a
perfect scoring system for assessing the reliability of experimental
human-virus PPIs is still not available. While large known virus-
host PPI data allow us to filter interactions with strict criteria, we
can only adopt loose filtering criteria when only scarce interaction
data are available to ensure that the retaining data size and quality
are sufficient for training.

Negative Sampling
In the absence of a gold standard for negative sample selection,
random sampling is probably the most commonly used method
(Dyer et al., 2011; Barman et al., 2014). For example, DeepViral
randomly samples pairs of human and viral proteins that do
not occur in the positive dataset (Liu-Wei et al., 2021). However,
random sampling may inevitably introduce false-negative data
points in the compiled training sets, prompting the development
of a different negative sampling method called “Dissimilarity-
Based Negative Sampling” (Eid et al., 2016; Yang et al., 2020,
2021a,b; Tsukiyama et al., 2021). The core idea is that if a viral
protein A is similar to a viral protein B that interacts with human
protein C (i.e., B-C is a positive sample), then the virus-host
protein pair A-C cannot be a negative sample.

Another open issue related to negative sampling is the ratio
of positive to negative samples. Often, a simple balanced ratio
(i.e., 1:1) is used for many prediction tasks. However, it will
cause the overestimation of model performance if the number of
negative samples is obviously larger than that of positive samples
in the real world (e.g., the issue of PPI prediction). An extremely
unbalanced ratio will also yield biased results by over-predicting
false negatives since negative samples are over-represented in the
training set. Although a perfect solution for the ratio of positive-
to-negative does not exist, an imbalanced ratio (e.g., 1:10) has
been proven reasonable to predict human-virus PPIs (Yang et al.,
2020; Liu-Wei et al., 2021; Tsukiyama et al., 2021).

DEEP LEARNING IN HUMAN-VIRUS
PROTEIN-PROTEIN INTERACTION
PREDICTION

Classification Model Construction
Through Supervised Deep Learning
In contrast to traditional ML methods, DL approaches are flexible
in allowing the known labels to relate to the input feature
vectors (Wainberg et al., 2018). However, the large number of
trainable parameters in DL creates more challenges to avoid
model overfitting (i.e., lose the generalization to new data)
compared to traditional ML techniques. To deal with this issue,
early stopping mechanisms by monitoring loss on the training
and validation sets, regularization of the model, or dropout
techniques are often adopted. As flexible architectures are a
main feature of DL approaches, some dominant DL architectures
such as convolutional neural network (CNN), recurrent neural
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FIGURE 1 | (A) Workflow of human-virus PPI prediction covering dataset construction, feature engineering, model construction, and performance assessment. ROC
indicates receiver operating characteristic curve and PR indicates precision-recall curve. (B) Transfer learning for the human-virus PPI prediction task. H, V, and P1
represents human protein, viral protein, and the single protein, respectively.

network (RNN), long-short term memory (LSTM) have been
used to predict human-virus protein interactions (Table 1). Such
DL architectures can be considered feature extractors, which
usually connect fully connected layers–also called Multi-layer
perceptron (MLP)–to provide end-to-end binary classifiers for
PPI prediction. After such supervised learning steps, trained
models can be used to predict interactions from query human-
virus protein pairs.

Convolutional Neural Networks
Deep neural networks with one or more convolutional and
pooling layers (i.e., CNNs) are usually applied to process image
data to capture local pixelated features (Krizhevsky et al., 2012).
In recent years, CNNs have been widely used to capture protein
features in bioinformatics studies (Hashemifar et al., 2018),
allowing the effective detection of local motif features of proteins
that mediate protein interactions while following pooling layers
reduce the dimensions of feature maps. Our previous work
applied a sequence-based siamese one-dimensional (1D) CNN
architecture to train a human-virus PPI classifier and achieved
better performance than traditional ML methods especially in
relatively large datasets (Yang et al., 2021b). In particular, we
employed the siamese network (Bromley et al., 1993) to learn
complex interaction relationships between human and viral
proteins. The core idea of the siamese network is parameter
sharing between two identical subnetworks (i.e., the human and
virus protein input subnetworks) that can effectively capture
the mutual influence of protein pairs (Chen et al., 2019).

Liu-Wei et al. (2021) employed 16 1D-convolutional layers with
a pooling layer and several dense layers to predict human-virus
PPIs. Moreover, Lanchantin et al. (2021) applied a convolutional
layer with multiple convolutional filters for neural network
training. Different architectures of CNNs in these publications
further demonstrate the flexibility of DL.

Recurrent Neural Networks and Long Short-Term
Memory
The main application of RNNs is in natural language processing,
such as machine translation (Sutskever et al., 2014) and speech
recognition (Graves et al., 2013). In particular, recurrent layers
allow the handling and integration of complex long-range
sequential information. Like convolutional layers, recurrent
layers also scan the input sequential data element by element
but preserve previous output value (i.e., a memory of the earlier
state) that are combined with the current input value to output a
value of the current state. RNNs are useful to convert variable-
length data to fixed-size representations as the inputs to the
next fully connected layers for prediction tasks (Greener et al.,
2022). In particular, the more advanced bidirectional gated
recurrent unit (GRU) variant of RNNs has been used to predict
intraspecies protein interactions, showing excellent performance
in combination with a CNN (RCNN) (Chen et al., 2019). Yet,
this deep learning framework did not allow more favorable
predictions of human-virus PPIs compared to simple CNNs
(Liu-Wei et al., 2021). Gradient explosion and disappearance will
occur when RNNs propagate backward since there are long-term
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TABLE 1 | Existing deep learning prediction methods of human-virus PPIs.

Method Virus species Input
information

Embedding
approach

Model architecture Number of
positive/negative

samples

Negative
sampling

URL

TransPPI (Yang
et al., 2021b)

Multiple viruses Protein
sequences

PSSM CNN + MLP + transfer
learning

31,381/313,810 Dissimilarity-
based negative
sampling

https://github.com/
XiaodiYangCAU/

TransPPI/

DeepViral
(Liu-Wei et al.,
2021)

14 viral families Protein
sequences,
functions, and
disease
phenotypes

one-hot and
node2vec

CNN + MLP 24,678/246,780 Random
sampling

https://github.com/bio-
ontology-research-
group/DeepViral/

LSTM-PHV
(Tsukiyama
et al., 2021)

All viruses Protein
sequences

word2vec LSTM + MLP 22,383/223,830 Dissimilarity-
based negative
sampling

http:
//kurata35.bio.kyutech.

ac.jp/LSTM-PHV/

DeepVHPPI
(Lanchantin
et al., 2021)

Multiple viruses Protein
sequences

one-hot CNN + MLP + transfer
learning

22,653/226,530 Dissimilarity-
based negative
sampling

https://github.com/
QData/DeepVHPPI/

MTT (Dong
et al., 2021)

Multiple viruses Protein
sequences

mLSTM MLP + transfer learning Multiple settings Multiple settings https:
//git.l3s.uni-hannover.de/
dong/multitask-transfer/

dependencies over the sequential series (Sun et al., 2020). As an
advanced architecture of RNN, LSTM introduces the concept
of cells and gates (an input gate, an output gate and a key
forget gate) (Gers et al., 2000). LSTM cells can store long-
term information while these gates regulate the information
into cells. Recently, Tsukiyama et al. (2021) employed two
LSTM subnetworks to transform the human and viral proteins-
embedding matrixes into two fixed-length vectors as the input to
subsequent fully connected layers to predict human-virus PPIs.
The LSTM architecture mitigates the gradient explosion and
disappearance problems of RNNs, effectively preserving long-
term memory information of protein sequences.

Feature Engineering in Deep Learning
Protein feature vectors used in DL models are often inferred
from protein sequences, including simple residue position
information, physicochemical properties, and evolutionary
information of residues, such as one-hot encoding and position-
specific scoring matrix (PSSM) (Table 1). Briefly, the one-hot
method encodes each amino acid as a vector of length n that
corresponds to the set of amino acid categories, allowing us
to represent a protein sequence of length L as a L × n matrix
with 0 and 1 entries. As a more fine-grained method to present
protein features PSSMs capture evolutionary relationships
between proteins. In particular, each amino acid (n) in the
protein sequence of length L has a specific score, allowing an
alternative representation of a protein sequence as a L × n
matrix. Furthermore, some word embedding techniques from
natural language processing have been adapted to represent
proteins, which can automatically convert k-mer amino acids or
proteins to fixed-dimensional feature vectors. Here, we mainly
focus on these embedding techniques and their applications in
the DL-based prediction of human-virus PPIs.

Word2vec and Doc2vec
Word2vec is a word embedding technique derived from natural
language processing to obtain distributed representations of
words through model training. Word2vec uses two-layer shallow
neural networks to obtain feature vectors of words by using

linguistic contexts, where two architecture choices including
continuous bag-of-words (CBOW) and skip-gram (Le and
Mikolov, 2014; Kimothi et al., 2016) are often used. Briefly, the
CBOW model predicts the current word by using surrounding
context words while skip-gram uses the current word to predict
the surrounding words. In particular, a textual corpus is generally
used to train the word2vec model to assign fixed-dimensional
vectors to words, enabling that the words sharing common
contexts and semantics in the training corpus are embedded close
to each other (Kimothi et al., 2016). Such an embedding approach
has been applied to represent protein sequences in several
bioinformatics tasks. For instance, the unsupervised word2vec
model trained from a corpus containing non-redundant proteins
in the Swiss-Prot database and the resulting feature vectors of
human and viral proteins were further used to train human-
virus PPI prediction models (Tsukiyama et al., 2021). In this
work, k-mers (i.e., k consecutive residues) in each sequence were
regarded as single words, representing each protein sequence
through multiple k-mers. The authors employed the CBOW
architecture to train the word2vec model and optimally set
k to 4. As a result, 128-dimensional embedding vectors for
multiple k-mers were retrieved and further concatenated to
obtain embedding feature matrixes of proteins. Additionally,
domains or motifs in proteins can also be treated as words in
documents. Similar to the word2vec model, protein sequences
can therefore be represented by feature vectors based on their
domains or motifs (i.e., domain or motif embeddings). In Pan
et al. (2021), the authors employed the skip-gram model to
pre-train domain embeddings and averaged multiple domain
embeddings in a protein sequence to construct the corresponding
protein feature vector. The resulting protein feature vectors were
further used to predict protein toxicity. Considering that human-
virus protein interactions are generally mediated by domain-
domain/motif interactions, the feature representation strategy of
domain/motif embeddings should be informative in predicting
human-virus PPIs.

As an extension of word2vec, doc2vec adds the whole
document as another word. Doc2vec considers the context
information of words and the whole document. When applied
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to protein sequences, each sequence is regarded as a document,
in which k-mers are defined as the corresponding words (Yang
et al., 2018). Subsequently, the doc2vec model is trained to learn
the feature vector representation of each protein sequence in
the corpus by using similar model architectures in word2vec. In
our previous work (Yang et al., 2020), we successfully employed
the doc2vec model to pre-train the embeddings of proteins
based on the Swiss-Prot corpus. We further used the obtained
low-dimensional feature vectors of human and viral proteins
as input to train an RF classifier to predict human-virus PPIs
(i.e., doc2vec + RF) and achieved better performance than other
sequence-based traditional ML algorithms.

Node2vec
Graphs, also known as networks, have been widely used to
represent biological entries (i.e., nodes) and their relations
(i.e., edges). A series of graph embedding methods have
been developed to automatically learn low-dimensional feature
representation for each node in the graph (Grover and
Leskovec, 2016; Ou et al., 2016; Wang et al., 2016). Such
low-dimensional feature representations preserve the network
structure information of the graph, which can be employed to
train ML models to tackle node classification or link prediction
problems (Yue et al., 2020). As one of the most commonly used
graph embedding methods, node2vec firstly adopts a flexible
random walk process to generate node sequences (multiple word
lists), which are subsequently fed to the word2vec model to obtain
node embedding features (i.e., node representations) (Grover
and Leskovec, 2016). In the field of bioinformatics, node2vec
is often used in node classification tasks such as identifying
essential proteins based on a PPI network (Zeng et al., 2019)
and detecting tissue-specific cellular functions through multi-
layer PPI networks (Zitnik and Leskovec, 2017). Additionally,
node2vec has been employed to obtain protein features based
on the network consisting of proteins, Gene Ontology (GO)
terms, and their associations called GO2Vec (Zhong et al., 2019).
Further, these network embeddings were used to predict protein
interactions (Zhong and Rajapakse, 2020; Liu-Wei et al., 2021).
In particular, Liu-Wei et al. (2021) employed their DL2Vec
method (node2vec variant) to embed human and viral proteins
by using GO and cross-species phenotype ontology annotations.
Such embeddings were then used as input to train a neural
network, allowing the reliable prediction of human-virus PPIs,
suggesting that node embedding is informative in recognizing
human-virus PPIs.

MODEL GENERALIZATION THROUGH
TRANSFER LEARNING

Since data available for training human-virus PPI prediction
models of novel or rarely investigated virus species are often
limited, the lack of sufficient labeled data is a major obstacle to
ML-based PPI identification. Transfer learning is a good solution
for processing relatively scarce data and improving prediction
performance. The core idea of transfer learning is to leverage
informative prior knowledge learning from other related tasks

to enable learning of a target task with small-scale data. In the
context of DL, deep transfer learning is becoming a promising
method in generalizing a DL-based human-virus PPI prediction
model.

Our recent work, TransPPI, employed two transfer learning
approaches to accurately predict human-virus PPIs (Yang
et al., 2021b). Specifically, we trained a CNN (i.e., the
feature extractor) as well as fully connected layers (i.e.,
the MLP classifier) with multiple large-scale human-virus
PPI datasets. In the next step, we retrained the model
on the target human-virus PPI dataset through two types
of transfer learning. (i) In the “frozen” approach, we kept
learned parameters of CNN layers unchanged and retrained
MLP layers with a target dataset; (ii) In the “fine-tuning”
approach we retrained both CNN parameters and MLP layers
with a target dataset. In general, the above transfer learning
strategies effectively utilized prior knowledge from a “source”
(e.g., human-HIV PPIs) to train in a target task domain
(e.g., human-SARS-CoV-2 PPIs), allowing us to improve the
performance and generalization of models based on small-scale
data (Figure 1B).

In a different approach, Lanchantin et al. (2021) adopted
a new transfer learning strategy to predict human-virus PPIs
for a novel virus without any experimental known interaction
data. The proposed architecture called DeepVHPPI first pre-
trained supervised structure prediction (i.e., secondary structure
prediction, residue contact prediction and remote homology
detection) models as source tasks. Then, their approach fine-
tunes the entire neural network on the target task (human-
virus PPI prediction) by transferring information from source
tasks (Figure 1B). Finally, DeepVHPPI showed promising
prediction performance when determining interactions with
human-SARS-CoV-2. While the underlying principle is based
on the assumption that both source and target learning
objectives share similar statistical properties, allowing to share
similar model parameters, the transfer learning strategies
of TransPPI and DeepVHPPI are different. In particular,
TransPPI transfers model parameters that were learned from
a source, large-scale human-virus PPI data set to predict
interactions in a different target human-virus setting. In
comparison, DeepVHPPI transfers feature representations of
protein structures that were learned from a source data set to
predict human-virus PPIs, assuming that the sequence-structure
relationship of interacting proteins is similar, regardless of the
considered organisms.

Dong et al. (2021) employed a multi-task transfer learning
method called MultiTask Transfer (MTT) to construct human-
virus PPI prediction model for novel viruses. Using a pre-trained
UNIREP model (Alley et al., 2019) based on multiplicative LSTM
(mLSTM) human and viral protein embeddings were obtained
to predict human-specific and human-virus PPIs based on
known PPI data from various benchmark datasets. In particular,
such an approach makes the implicit assumption that the
underlying statistical characteristics of amino acid composition
of interacting proteins are generally similar. Although viral
proteins try to mimick human interaction partners to bind
to a specific host protein (Mariano and Wuchty, 2017), the
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number of human interaction partners a virus usually interacts
with is rather limited. As human interaction partners hardly
cover the whole human proteome, human PPIs potentially
introduce a training bias, overpowering the specificity of human-
virus interactions.

STRENGTH AND WEAKNESS OF
EXISTING DEEP LEARNING-BASED
HUMAN-VIRUS PROTEIN-PROTEIN
INTERACTION PREDICTION METHODS

In Table 1, we summarize recently developed deep learning-
based human-virus PPI prediction methods (see Sections
“Dataset Construction of Human-Virus Protein-Protein
Interaction Prediction” to “Model Generalization Through
Transfer Learning” for details of methods) to further analyze
the strengths and weaknesses of these methods. LSTM-PHV
employed word2vec + LSTM + MLP framework to train the
human-virus PPI prediction model, where word2vec effectively
captures context semantic information of k-mer amino acids.
Furthermore, LSTM mitigates the explosion and disappearance
of gradients in RNNs, enabling long-range sequential learning.
Notably, other methods mainly adopt CNNs in their model
architecture, better capturing local features of protein sequences,
such as linear binding motifs that mediate human-virus PPIs
compared to RNN/LSTM-based methods.

As the main innovation, DeepViral learns protein
representations, that account for GO and disease phenotype
ontology information as additional features to simple sequence
information using a node2vec approach. Although such an
approach allows a better representation of proteins compared
to a simple one-hot sequence representation, this feature
encoding method comparatively relies on functional and disease
phenotype data of human and viral proteins. Such a dependence
on auxiliary data may be limiting the method applicability to
host-virus domains where virus specific information is missing.

The highlight of TransPPI and DeepVHPPI is the application
of transfer learning techniques, that can improve model
performance and generalization ability when available training
data of novel or rarely investigated virus species are limited.
In contrast to DeepVHPPI, TransPPI taps similarities of
sequence composition of interacting human and viral proteins,
potentially leading to better prediction performance. In
particular, DeepVHPPI trains on a human-all virus PPI set,
which is finally used to predict human-specific virus PPIs. In
contrast, TransPPI requires that the target virus species has a
small number of known human-virus PPI data. DeepVHPPI
does not have this requirement, making this approach applicable
to host-virus pairs where no experimental data is available.
Another transfer learning method MTT mainly employs a
multi-task learning strategy by considering human-specific
PPIs as well. While such auxiliary training data improves
model generalizability, such PPIs also introduce host-specific
interaction characteristics that may impair the specificity to
detect host-virus interactions.

DISCUSSION

Deep learning is playing an increasingly important role in
human-virus PPI prediction. Although existing DL methods
have outperformed traditional ML methods in predicting
human-virus PPIs, much room for improvement remains. First,
more DL architectures and feature representations should be
used. The optimal combination of the DL architecture and
feature engineering should be sought to maximize prediction
performance. Existing DL methods may supplement previous
human-virus PPI prediction methods. Thus, the integration
of different prediction methods can often result in a more
accurate and robust predictor. Moreover, model interpretability
received a wide concern for ML-based methods. Usually, the way
DL architectures end up with their predictions and predictive
features are unknown, prompting the call for more explainable
DL methods. In some bioinformatics tasks (Pan et al., 2021;
Zhu et al., 2021), the prediction models have generally been
simply interpreted by using t-distributed stochastic neighbor
embedding (t-SNE) (van der Maaten and Hinton, 2008) to
visualize the learned high-dimensional feature representations in
2D space. Note, that such t-SNE-based visualization can merely
demonstrate the general effectiveness of the feature embedding
methods, while the contributive features are not highlighted.
Recently, attention mechanisms have provided a new direction
for interpreting black-box DL models (Choi et al., 2017; Zhou
et al., 2018), which should be introduced to interpret the DL
models of human-virus PPI predictions as well.

Similar to other bioinformatics prediction tasks, rigorous
and fair performance comparison of different human-virus PPI
prediction methods is crucial. Generally, the performance of
a newly developed human-virus PPI prediction is evaluated
by using test sets that are specifically compiled or commonly
used (Barman et al., 2014; Eid et al., 2016). Considering that
such datasets were constructed based on different criteria, the
performance comparison of different methods will inevitably
yield biased results. To allow a more comprehensive method
comparison, community-wide efforts should be taken. First,
some comprehensive human-virus PPI data sets with strict
reliability and quality controls should be compiled, which is
fundamental for comparing different methods. Second, the
developers should make their methods freely accessible to the
community either through the construction of web servers or
the release of source codes. Third, third-party teams should
be encouraged to conduct a critical assessment of different
prediction methods to obtain more unbiased comparison results.
Last but not least, regular community-wide competition is also
helpful to boost the improvement of human-virus PPI prediction.
To this end, we should follow the successful experience of
the Critical Assessment of protein Structure Prediction (CASP)
experiments.2

Currently, dramatic progress in protein structure
prediction has been made by AlphaFold2, a DL-powered
method developed by the research team of DeepMind, and
its high-accuracy performance has been reported in the

2https://www.predictioncenter.org/
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CASP14 experiment (Jumper et al., 2021). Undoubtedly, the
coming post-AlphaFold2 era will provide an unprecedented
opportunity for the protein bioinformatics community,
suggesting that many prediction methods can be significantly
improved and upgraded by incorporating accessible and accurate
structural information, including the prediction of human-
virus PPIs. First, structural information has been widely
used in previous human-virus PPI prediction methods. For
instance, the P-HIPSTer model developed by Lasso et al.
(2019) relied on the structural similarity of query human-
virus protein pairs to known structural domain-domain/motif
interactions to quantify the interaction possibility of query
protein pairs. Although P-HIPSTer provided accurate prediction
results, coverage of the predicted interactome is insufficient,
mainly as a consequence of limited available 3D structures.
With more accurate structural predictions from AlphaFold2,
prediction coverage of such structure-informed human-virus
PPI prediction method can be significantly increased. Second,
the available structural information can contribute rich feature
representations to develop DL-based prediction models. For
instance, residue-level structural features can be easily introduced
into the established DL architectures. 3D structures of proteins
can also be converted into graphs, allowing the application of
more effective DL architectures such as graph convolutional
neural networks. Last but not least, highly accurate protein
structures will not only propel binary PPI predictions but
also predict interaction details from binding regions/residues
to 3D conformational dynamics of two interacting proteins.
Indeed, Baek et al. (2021) have taken the initiative to employ
two DL-based structure prediction methods (i.e., RoseTTAFold
and AlphaFold2) to systematically detect PPIs and construct
accurate 3D models of protein complexes within the yeast
proteome (Humphreys et al., 2021), which will be used

for human-virus PPI prediction as well in the future. Very
recently, Gao et al. (2022) developed a DL-based protein
complex prediction method termed as AF2Complex, in which
AlphaFold2 monomer models were employed to predict the
structures of multimeric protein complexes and metrics for
predicting direct PPIs between arbitrary protein pairs were also
introduced. Considering AF2Complex does not rely on paired
multiple sequence alignments, it could be suitable for addressing
human-virus PPIs. Taken together, we are fast approaching the
development of successful methods to predict human-virus PPIs
empowered by DL and AlphaFold2, unveiling the secrets of
human-virus relationships.
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