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ABSTRACT: The large-scale identification of protein−protein
interactions (PPIs) between humans and bacteria remains a
crucial step in systematically understanding the underlying
molecular mechanisms of bacterial infection. Computational
prediction approaches are playing an increasingly important
role in accelerating the identification of PPIs. Here, we
developed a new machine-learning-based predictor of human−
Yersinia pestis PPIs. First, three conventional sequence-based
encoding schemes and two host network-property-related
encoding schemes (i.e., NetTP and NetSS) were introduced.
Motivated by previous human−pathogen PPI network analyses, we designed NetTP to systematically characterize the host
proteins’ network topology properties and designed NetSS to reflect the molecular mimicry strategy used by pathogen proteins.
Subsequently, individual predictive models for each encoding scheme were inferred by Random Forest. Finally, through the
noisy-OR algorithm, 5 individual models were integrated into a final powerful model with an AUC value of 0.922 in the 5-fold
cross-validation. Stringent benchmark experiments further revealed that our model could achieve a better performance than two
state-of-the-art human−bacteria PPI predictors. In addition to the selection of a suitable computational framework, the success
of our proposed approach could be largely attributed to the introduction of two comprehensive host network-property-related
feature sets. To facilitate the community, a web server implementing our proposed method has been made freely accessible at
http://systbio.cau.edu.cn/intersppiv2/ or http://zzdlab.com/intersppiv2/.
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■ INTRODUCTION

Currently, infectious diseases (e.g., bacterial diseases) remain a
major threat to human life and health, sickening and killing
millions of people every year. On the one hand, the coinfection
of bacterial and viral diseases has become a new trend.1 On the
other hand, the overuse or abuse of antibiotics has resulted in
the rapid emergence of drug-resistant bacteria worldwide and
has endangered the effectiveness of antibiotics.2 These two
factors make the treatment of bacterial diseases a long-term
challenge, forcing us to accelerate the study of the molecular
mechanisms of bacterial infection.
As the most important type of host−pathogen interaction,

protein−protein interactions (PPIs) between host and
pathogen play an important role in infection and disease
progression.3,4 Owing to the progress in high-throughput
techniques, the identification of PPIs in individual organisms
(intraspecies PPIs) that are verified by large-scale experiments
has rapidly increased. In contrast, the identification of PPIs
between different organisms (interspecies PPIs), such as host−
pathogen PPIs (HP-PPIs), is only now emerging, and
experimental data are generally limited. Moreover, exper-
imental methods are often time-consuming and laborious,

making it unfeasible to detect all possible HP-PPIs. Therefore,
there is an urgent need to develop efficient and reliable
computational prediction approaches to identify interaction
candidates or to prioritize targets for high-throughput HP-PPI
screening.
Traditional intraspecies PPI prediction approaches often use

known PPIs, domain−domain interactions (DDIs) and
domain−motif interactions (DMIs) as templates to infer the
potential interaction relationships between query protein pairs,
and these methods are generally referred to as interolog
mapping,5,6 the DDI-based method7,8 and the DMI-based
method,9 respectively. In the meantime, machine learning
(ML)-based prediction methods have also been booming in
recent decades. ML-based methods typically convert the PPI
prediction task into a binary classification framework. To train
an ML predictive model, the encoding schemes converting
protein pairs into feature vectors are required. Currently, a
variety of protein-encoding schemes have been developed,
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including sequence,10−15 structure,16 physiochemical proper-
ties,10,17 and evolutionary profiles.18,19

Compared to intraspecies PPI prediction, the computational
prediction of interspecies PPIs is a relatively young research
topic. Traditional intraspecies PPI inference methods, such as
interolog mapping,20 the DDI-based method20,21 and the
DMI-based method,22 have been directly adapted to predict
interspecies PPIs, although their performance has not been
intensively benchmarked. With the accumulation of exper-
imentally verified HP-PPI data, ML-based HP-PPI prediction
methods have also been proposed.23 Most of these ML-based
methods simply apply known intraspecies PPI prediction
schemes to HP-PPI prediction without fully considering the
biological characteristics of the interspecies PPIs. Overall,
predicting interspecies PPIs is more challenging than intra-
species PPIs due to the finiteness of data resources and the
complicated regulatory mechanisms of interspecies PPIs.
Regarding the host−pathogen system, most studies have

focused on PPI prediction between human and pathogens.
Indeed, a number of human−virus PPI prediction methods
have been developed.22,24−29 Some PPI prediction approaches
related to human and bacteria have also been proposed,21,30−35

but only a handful of them employed ML to build predictive
models. Kshirsagar et al. proposed a multitask learning-based
method for predicting human−bacteria PPIs, which was based
on the biological hypothesis that proteins from different
pathogens essentially target the same critical biological
processes in human cells.32 However, when put into practice,
this method still has limitations in the acquisition of high-
dimensional features such as the Gene Ontology (GO)
annotations for query protein pairs. Very recently, Ahmed et
al. used a multilayer neural network to predict human−Bacillus
anthracis (human−B. anthracis) PPIs mainly by using a series
of sequence features, including triplets and quadruplets of
consecutive amino acids.30 Although a promising performance
has been reported,30,32 the existing methods are not satisfying
for practical use due to the lack of easy-to-use executive codes

and web servers, suggesting that there is sufficient room for
method improvement.
In the context of HP-PPI networks, some interesting

network patterns have also been observed. According to
several recent studies on the human−Yersinia pestis (human−Y.
pestis) PPI network,36,37 bacterial effector proteins have
evolved to preferentially interact with important host proteins,
which tend to be hubs (proteins with many interacting
partners) and bottlenecks (proteins that lie in the shortest
paths between many pairs of proteins) in the human PPI
network. Moreover, it is well-established that the molecular
mimicry of host proteins is a widely adopted strategy for
pathogenic bacteria to exploit and subvert host processes
during infection.38−40 In brief, the bacterial effector proteins
mimic the host-targeting proteins’ partners and compete with
them for the binding interface at the host proteins, making the
host proteins unable to bind to their partners, thereby
disrupting the normal host pathway. These previous network
analyses not only allowed us to obtain a global landscape of
host−pathogen PPIs but also provided important hints for the
development of new interspecies PPI predictors.
In this work, we aimed to develop a new ML-based predictor

of PPIs between human and Y. pestis. As a rod-shaped Gram-
negative bacteria and plague pathogen, Y. pestis is classified as a
potential agent of bioterrorism.41 Historically, it has caused
three massive pandemics that have killed tens of millions of
people.42 High-throughput experiments have been used to
detect human−Y. pestis PPIs, providing sufficient data and an
excellent opportunity for the development of ML-based
prediction methods. To this end, efforts were made in two
aspects. On the one hand, we dedicated ourselves to seeking
new encoding schemes, which is an effective and important
strategy to improve the performance of ML-based predictors.
In addition to protein sequence information, we focused on the
maximal utilization of host network property based features.
On the other hand, we attempted to optimize an ML-based
computational framework. We assessed different ML methods
on the encoding schemes and selected the most suitable one,

Figure 1. Flowchart and highlights of the proposed human−bacteria PPI predictor. (a) Computational framework of the prediction model. (b) A
schematic example of the NetSS encoding scheme. Suppose that bacterial protein B interacts with human host protein A, which contains three
partners: proteins a1, a2, and a3. We used NW and BLAST algorithms to obtain six similarity measures [NW_identity, NW_similarity, NW_score,
BLAST_identity, BLAST_-lg (E-value), and BLAST_bit-score] between protein B with proteins a1, a2, and a3, individually. The corresponding
maximum values were taken as the features of NetSS.
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as well as the corresponding integration strategy, to build the
final predictive model.

■ MATERIALS AND METHODS

Data Sets

Regarding the ML-based HP-PPI prediction, experimentally
verified HP-PPIs were treated as positive samples, while non-
interacting protein pairs (non-PPIs) from the host and
pathogen were treated as negative samples. The human−Y.
pestis PPIs were downloaded from the Host−Pathogen
Interaction Database (HPIDB)43 and the Pathosystems
Resource Integration Center (PATRIC).44 The redundant
PPIs were first removed, and then the PPIs containing proteins
with fewer than 35 amino acids or with nonstandard amino
acids were further filtered out; thus, 3892 PPIs between 1207
Y. pestis proteins and 2067 human proteins were retained and
used as the positive samples. In total, 345 280 human PPIs
were obtained from the BioGRID,45 HPRD,46 and I2D47

databases to construct a human PPI network. We used a
common method called random sampling to construct the
negative samples, in which the human proteins were selected
from our human PPI network, whereas the Y. pestis proteins
were downloaded from UniProt.48 Although highly imbalanced
in the real world, the ratio of positive to negative samples was
determined to be 1:1 to infer the ML-based models, which is
commonly used in PPI prediction.12,33 Finally, we obtained an
initial data set containing 3892 PPIs and 3892 non-PPIs, which
was further used to infer the predictive model.

Computational Framework of the Proposed Predictor

Based on the collected PPI data between human and Y. pestis,
we designed a computational framework to develop a new HP-
PPI predictor (Figure 1a). First, we introduced five different
encoding schemes to construct feature vectors for protein pairs
between human and Y. pestis. These five encoding schemes
included three sequence-based encodings [i.e., auto covariance
(AC), the composition of k-spaced amino acid pairs
(CKSAAP), and pseudotripeptide composition (PseTC)],
and two host network-property-related encodings [i.e., net-
work topology parameters (NetTP) and sequence similarity
measurements between the pathogen protein and the host
protein’s partners (NetSS)]. Subsequently, we built the
individual predictive model of each encoding scheme by
Random Forest (RF). Finally, we used the noisy-OR
algorithm49 to integrate the five individual models into a
final predictive model. Additional details about the encoding
schemes, the implementation of RF, and model integration are
elaborated in the following sections.

Encoding Schemes

AC. AC accounts for the interactions between amino acid
residues separated by a certain number of amino acids
throughout the whole sequence.10 Here, we employed seven
physicochemical properties of amino acids (Table S1),
including hydrophobicity, hydrophilicity, volumes of side
chains, polarity, polarizability, solvent-accessible surface area,
and net charge index of side chains, to infer the AC feature
vector. To represent a protein sequence X with a sequence
length of n, the AC variables are calculated according to eq 1:
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where lag is the sequence distance between residues and Pi, j is
the jth physicochemical property of the ith amino acid in the
sequence X. A protein pair was characterized by concatenating
the AC variables of two proteins. We set the maximal lag as 30;
thus, a protein pair was converted into a 420-dimensional (30
× 7 × 2) vector.

CKSAAP. For a protein sequence, there are 20 common
amino acids that make up a total of 400 amino acid pairs.
These pairs can be extended to the k-spaced amino acid pairs
(i.e., the pairs separated by k other amino acids).50,51 Here, the
CKSAAP encoding considered the k-spaced amino acid pairs,
with k = 0, 1, 2, and 3. For instance, there is a protein sequence
of “AAACC”. When k = 0, the CKSAAP can be expressed as
(AA, AC, AD,..., CA, CC,..., YY)400; this protein sequence
contains 2 “AA” pairs, 1 “AC” pair and 1 “CC” pair, which can
be expressed as a 400-dimensional vector (2/4, 1/4, 0, ..., 0, 1/
4, ..., 0)400. When k = 1, the CKSAAP can be expressed as
(A_A, A_C, A_D, ..., C_A, C_C, ..., Y_Y)400; this protein
sequence contains 1 “A_A” pair and 2 “A_C” pairs, which can
be expressed as (1/3, 2/3, 0, ..., 0, 0, ..., 0)400. Similarly, the
CKSAAP for k = 2 and 3 can also be obtained. By
simultaneously taking the above four vectors into account,
the resulting CKSAAP of a protein sequence can be
represented by a 400 × 4 dimensional feature vector. By
further concatenating the vectors of two proteins, a protein
pair was converted into a 3200-dimensional (400 × 4 × 2)
vector.

PseTC. PseTC uses the tripeptide composition to represent
a protein sequence. To avoid the dimensionality explosion
problem, we divided the 20 amino acids into 13 groups (G, IV,
FYW, A, L, M, E, QRK, P, ND, HS, T, and C)14 and then
calculated the group-based tripeptide composition (i.e.,
PseTC). Thus, a protein pair was converted into a 4394-
dimensional (133 × 2) vector.

NetTP. Considering that the host-targeting proteins contain
specific network topology properties in the host PPI network,
we used seven network topology parameters to infer the
NetTP encoding, including degree centrality, betweenness
centrality, closeness centrality, eigenvector centrality, Pag-
eRank centrality, eccentricity, and clustering coefficient. The
degree centrality of a node is the number of its neighboring
nodes in the network. The betweenness centrality of a node is
defined as the fraction of shortest paths between node pairs
that pass through the node of interest. The closeness centrality
of a node is defined by the inverse of the average length of the
shortest paths to all the other nodes in the network.
eigenvector centrality measures the centrality of a node by
considering its neighboring nodes’ centralities.52 In particular,
it can identify nodes with a low degree while bridging
subnetworks with highly connected nodes. As a variant of
eigenvector centrality, PageRank centrality was first proposed
by Google to evaluate the importance of webpages.53 It
describes the importance of a node by considering both the
number and importance of its parent nodes. The eccentricity
of a node is calculated by measuring the shortest distance from
the node to all nodes in the network and taking the maximum.
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The clustering coefficient of a node is defined as the ratio of
the edges present among its neighbors to all the possible edges
that could be present among the neighbors. Here, we used the
R package called igraph54 to calculate these seven network
topology parameters of proteins in our human PPI network.
Note that this encoding scheme can only infer features for the
human protein from the protein pair. Thus, a protein pair was
converted into a seven-dimensional vector.
NetSS. Following the molecular mimicry strategy, the

NetSS encoding scheme was designed to represent the
sequence similarity between the pathogen protein and the
host-targeting protein’s partners. We used two sequence
alignment algorithms [i.e., the Needleman-Wunsch (NW)
algorithm55 and BLAST]56 to infer the NetSS features. The
identity, similarity, and alignment score between two protein
sequences from the NW result, and the identity, E-value, and
bit score from the BLAST result were used. When a host
protein has more than one partner protein, the six sequence
similarity measures between each partner and the pathogen
protein were calculated, and the maximal value corresponding
to each similarity measure was retained. A schematic example
for the calculation of NetSS is shown in Figure 1b. Thus, a
protein pair was converted into a six-dimensional vector.

Implementation of RF and Construction of the Integrative
Model

RF is a flexible, popular, and easy-to-use ML method to build
predictive models for both classification and regression
problems.57 Following the ensemble strategy, the RF model
creates an entire forest of random uncorrelated decision trees
to achieve the best possible result. In this work, we employed
the Waikato Environment for Knowledge Analysis (WEKA)58

to infer RF-based predictive models for different encoding
schemes. For three sequence-based encoding schemes, the
parameter called batch size was set as 2000. For the encoding
schemes of NetTP and NetSS, the batch size was set as 100
and 300, respectively. Other parameters were set as defaults.
For a query protein pair, five different prediction scores were
obtained from the RF models corresponding to different
encoding schemes. The noisy-OR algorithm49 was further
employed to integrate the five prediction scores into the final
prediction score, which was carried out through the following
three steps.

In the first step, for a protein pair (i,j), the interaction
probability I(i, j) derived from the prediction score of each
individual model was calculated, respectively, which was
defined as:

| =
| ≥ |

| ≥ |
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where s(i, j), k is the prediction score in the kth model (k is from
1 to 5). In the second step, the probabilities from all the
prediction scores generated by individual models were
integrated into a single probability using the noisy-OR model:
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where n is the total number of models. In the third step, a final
probability of interaction was calculated as:
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Performance Evaluation

To train and evaluate the predictive models, the initial
human−Y. pestis data set was further partitioned into a training
set (3135 PPIs and 3135 non-PPIs) and an independent test
set (757 PPIs and 757 non-PPIs). To conduct a stringent
performance assessment, both a 5-fold cross-validation and an
independent test were carried out. We chose the receiver
operating characteristic curve (ROC curve) and area under
ROC curve (AUC) to assess the performance of our models.
The ROC curve is created by plotting the true positive rate
(TPR) against the false positive rate (FPR) at various
threshold settings. TPR is also known as sensitivity or recall,
and FPR is equal to 1 − specificity. The formulas to calculate
TPR and FPR are as follows:

= = =
+

TPR sensitivity recall
TP

TP FN (5)

=
+

= −
+

= −FPR
FP

TN FP
1

TN
TN FP

1 specificity

(6)

Figure 2. Performance of each individual model and the integrative model. (a) ROC curves of 5-fold cross-validation. (b) ROC curves of the
independent test.
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where the true positive (TP) is defined as the number of
interacting samples classified correctly, the true negative (TN)
stands for the number of non-interacting samples classified
correctly, the false positive (FP) denotes the number of non-
interacting samples classified mistakenly as interacting, and the
false negative (FN) is defined as the number of interacting
samples classified mistakenly as noninteracting. The larger the
AUC, the better the predictive performance of the model.
A confusion matrix was also used to complement the

performance assessment of the predictive models, which shows
the TPR, false negative rate (FNR), FPR, and true negative
rate (TNR) of a model at the maximum of MCC (Matthews
correlation coefficient). The MCC is calculated according to
the following formula:

= × − ×
+ + + +

MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN)
(7)

■ RESULTS AND DISCUSSION

Performance of Each Individual Model

For each encoding scheme, we used RF to construct the
corresponding predictive model. The ROC curves of each
model in the 5-fold cross-validation and independent test are
illustrated in Figure 2. We found that the three sequence-based
models achieved a relatively good and close performance.
Regarding the 5-fold cross-validation, their AUC values ranged
from 0.866 to 0.878. Moreover, the sequence-based models
outperformed the other two network-based methods (NetTP
and NetSS), whose AUC values were equal to 0.823 and 0.768,
respectively. Notably, the ROC curves in the independent test
set showed the same trend.

Performance of the Final Integrative Model

To improve the prediction performance, we used the noisy-OR
algorithm to integrate these five individual models into a more
powerful model. Generally, the final integrative model resulted
in a significant performance improvement (Figure 2, DeLong’s
test, p value of <2.2 × 10−16). The AUC of the integrated
model was 0.922, which was 0.044 higher than that of the best
individual model (i.e., the AC encoding scheme) in the 5-fold
cross-validation. The performance of the independent test also
improved by 0.042 after integration compared to the best
individual model (i.e., the CKSAAP encoding scheme). In
practice, the performance at low-FPR control seems to be
more important. Thus, we also calculated the corresponding
AUC01 values (i.e., the partial AUCs, with the Specificity
being 1 to 0.9). As listed in Table 1, the final integrative model
also considerably outperformed any individual model. To
further quantify the performance of the final integrative model,

the confusion matrices of each individual model and the
integrative model are also provided in Figure S1.
Considering that negative data are much more available than

positive data, we also conducted computational experiments to
test the influence of negative sampling. We randomly selected
another nine groups of negative data sets and retrained the
predictive models. The results showed that the model
performance inferred from these 10 different groups of
negative samples was quite stable. For instance, the average
AUC value of the integrated model was 0.918 in the 5-fold
cross-validation, which outperformed any individual model
(Figure S2). Therefore, we concluded that the proposed
prediction method is generally robust to the change of negative
samples.
It is worth noting that existing HP-PPI prediction methods

usually concatenate the heterogeneous features into a high-
dimensional feature vector to facilitate the implementation of
ML algorithms rather than take the computational framework
used in this work. For comparison, we also tried to build the
RF model based on the concatenation of the five encoding
schemes into a high-dimensional vector. To avoid the potential
curse of dimensionality, the feature selection approach called
minimal-redundancy−maximal-relevance criterion (mRMR)59

and the feature projection approach called principal
component analysis (PCA)60 were used to reduce the
dimension. As shown in Table 2, the performance of the

three models based on the concatenation of different encoding
schemes was inferior to our integrative model, and these two
feature selection methods did not result in performance
improvement, which implied that our current computational
framework was more suitable for predicting human−Y. pestis
PPIs. We also used four other popular ML methods
[Adaboost, Naive Bayes, Logistic Regression, and Support
Vector Machine (SVM)] to verify our conclusions. Briefly, we
used these four ML methods to obtain the predictive model of
each encoding scheme, and then the integrative model
corresponding to each ML method was obtained through the
noisy-OR algorithm again. Note that Adaboost, Naive Bayes,
and logistic regression were implemented through the
WEKA58 platform, while the training of the SVM model was
carried out through the LIBSVM package.61 Adaboost, short
for adaptive boosting, is an ML meta-algorithm. In this work,
the base classifier of Adaboost was set as RF, and the other
parameters were set as defaults. The parameters in Naive Bayes

Table 1. AUC01 Values of Each Individual Model and the
Final Integrative Model

method 5-fold cross-validation independent test

AC 0.046 0.046
CKSAAP 0.044 0.043
PseTC 0.043 0.045
NetTP 0.048 0.046
NetSS 0.025 0.028
integrative model 0.060 0.059

Table 2. Performance (AUC) Comparison of Our
Integrative Model and Other Models Based on the
Concatenation of Different Encoding Schemes

methoda 5-fold cross-validation independent test

our model 0.922 0.924
concatenationb 0.887 0.896
concatenation plus PCAc 0.839 0.836
concatenation plus mRMRd 0.840 0.850

aWe built the RF model based on the concatenation of the five
encoding schemes into a high-dimensional vector. To avoid the
potential curse of dimensionality, the feature selection approach called
minimal-redundancy−maximal-relevance criterion (mRMR)59 and
the feature projection approach called principal component analysis
(PCA)60 were used to reduce the dimension. bHere, the
dimensionality of concatenation was 8027. cAfter the feature selection
of PCA, the dimension was reduced to 900. dAfter the feature
selection of mRMR, the dimension of the retained features was 400.
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and logistic regression were also set as defaults. For SVM, the
parameters c and g of the five encoding schemes were
optimized by grid search. The results showed that RF
outperformed these 4 ML methods, either in the 5-fold
cross-validation or in the independent test (Table 3),
demonstrating that RF does exhibit a great tolerance for
high-dimensional feature vectors and, therefore, is suitable for
our classification task.

Contribution of Network Property Based Encoding
Schemes to the Integrative Model

To investigate the contributions of different encoding schemes,
we also separately integrated three sequence-based encoding
schemes and two network-based encoding schemes through
the noisy-OR algorithm. The integration of the three sequence-
based encoding schemes resulted in only minor improvements,
with the AUC increasing from 0.878 (the best sequence
encoding scheme, AC) to 0.889 (Table S2, DeLong’s test, p
value of 0.060), while the integrative model of the two
network-based encoding schemes showed a more significant
performance improvement, with the AUC increasing from
0.823 (NetTP) to 0.855 (DeLong’s test, p value of 7.4 × 10−6).
Thus, these two network-based encoding schemes were
complementary and they contributed considerably to the
improved performance of the final integrative model, although
their individual performances were weak.

Table 3. Performance (AUC) Comparison of RF and the
Other Four ML Methods in the Five-Fold Cross-Validation
and Independent Test

ML method 5-fold cross-validation independent test

Random Forest 0.922 0.924
Adaboost 0.889 0.895
SVM 0.893 0.871
naive bayes 0.734 0.740
logistic regression 0.753 0.696

Figure 3. Distribution histograms of the NetTP features in positive and negative samples.
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To quantitatively characterize the features of the two
network-based encoding schemes and to understand the
corresponding biological significance, we conducted statistical
analyses of these features in positive samples and negative
samples. Regarding NetTP, the distribution histograms of the
seven network topology parameters were plotted to intuitively
demonstrate their effectiveness in distinguishing positive
samples from negative samples (Figure 3). In addition to the
clustering coefficient (Wilcoxon test, two-tailed p value of
0.021), the distributions of the remaining six topology
parameters were significantly different between positive
samples and negative samples (Wilcoxon test, two-tailed p
value of <2.2 × 10−16). For instance, we found that the average
degree or betweenness centrality of human proteins in positive
samples was significantly larger than that of human proteins in
negative samples (Figure 3a,b). In line with previous analyses,
these results showed that the effector proteins of Y. pestis were
more likely to attack hubs and bottlenecks in the human PPI
network to effectively infect the host. The host-targeting
proteins had many interacting partners and lay in shortest

paths between any two proteins, so they could control the flow
of information between other nodes. Once they were attacked,
the entire network would quickly collapse. It should be
emphasized that PageRank and eigenvector centrality also have
a high impact on the classification of PPIs and non-PPIs
between human and Y. pestis. Indeed, PageRank has been
proved to be more effective than the degree in the
identification of crucial nodes in some biological networks.62

To the best of our knowledge, these new network topology
properties have not been used in the prediction of human−
bacteria PPIs. In this work, these seven topology parameters
were jointly used to comprise a comprehensive feature vector
to maximally reflect the overall topology patterns of host-
targeting proteins. Slightly different from NetTP, the
distributions of the corresponding features in positive and
negative samples are illustrated by box plots (Figure 4).
Intuitively, the results showed that the six indicators were
significantly higher for positive samples than for negative
samples (Wilcoxon test, one-tailed p value of <2.2 × 10−16),
indicating that the Y. pestis proteins tended to share sequence

Figure 4. Box plots showing the distribution of the NetSS features in positive and negative samples. We took the “-lg” transformation of the original
BLAST E-value.

Figure 5. Performance of our model in predicting PPIs between human and two other bacterial species. (a) ROC curves in predicting human−B.
anthracis PPIs. (b) ROC curves in predicting human−F. tularensis PPIs.
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similarity with their host-targeting proteins’ partners. The
results also provided indirect evidence to support that bacterial
proteins follow the molecular mimicry strategy to interact with
their host-targeting proteins. The NW algorithm identifies the
global sequence similarity between two proteins, while BLAST
reflects the local sequence similarity. In short, the NetSS
encoding represented a comprehensive set of similarity
indicators that we hoped could systematically characterize
the sequence similarity between bacterial proteins and their
host-targeting proteins’ partners. Collectively, the aforemen-
tioned statistical analyses clearly demonstrated the effective-
ness of these two comprehensive host network-property-
related feature sets.

Ability to Predict PPIs between Human and Two Other
Bacterial Species

To evaluate the extrapolation of our model, we also assessed its
performance in predicting PPIs between human and other
bacterial species. To this end, we downloaded 3039 human−B.
anthracis PPIs and 1375 human−Francisella tularensis
(human−F. tularensis) PPIs from HPIDB43 and PATRIC.44

The method of selecting the negative samples for human and
the two bacterial species was the same as that used in the
human−Y. pestis PPI data set. We found that our model
showed a reasonably good performance for both the human−
B. anthracis PPI data set and the human−F. tularensis PPI data
set, and the corresponding AUC values were 0.889 and 0.893,
respectively (Figure 5). The ROC curves of these two data sets
both showed that the integrative model significantly out-
performed the best individual model, further suggesting that
our predictive model had strong robustness and generalization
ability. Due to the overall lack of experimental HP-PPIs, it is
impossible to develop specialized predictors for any pathogenic
bacteria. In this context, our predictive model could be
employed for predicting PPIs between human and other
bacterial species, although the performance may be not
optimal.

Comparison with Two Traditional PPI Prediction Methods

We compared our model with two traditional PPI inference
methods: interolog mapping and the DDI-based method. To
conduct the interolog mapping, we downloaded the intra-
species and interspecies PPIs from seven databases, including
BioGRID,45 DIP,63 HPIDB,43 HPRD,46 IntAct,64 MINT,65

and PATRIC.66 After removing redundant PPIs, self-
interactions and human−Y. pestis PPIs, the remaining
907634 PPIs containing 108 031 proteins were used as
interolog mapping templates. We compared human proteins
and Y. pestis proteins with these 108031 proteins using BLAST
to find homologous relationships with the following criteria: E-
value of ≤0.00001, identity of ≥30%, and query coverage of
≥40%. The results showed that the corresponding Sensitivity
and Specificity values of the interolog mapping method were
0.037 and 0.976, respectively (Table S3).
To conduct the DDI-based PPI inference, 11 200 DDIs were

downloaded from the 3did database.67 A basic assumption of
this method is that proteins interact with each other through
the domains they contain. If at least one DDI exists between
two proteins, we can infer that these two proteins should
interact with each other. We used the InterProScan68 approach
for domain scanning. The Sensitivity and Specificity values of
the DDI-based prediction method were 0.004 and 0.999,
respectively (Table S3). Collectively, the overall performance
of these two traditional methods for the human−Y. pestis PPI

data set was very poor (reflected as low sensitivity), meaning
that the development of a specialized interspecies PPI
predictor for human−Y. pestis is required.
To make a fair comparison, we compared the sensitivity of

our model with the interolog mapping and the DDI-based
method when the specificity was controlled at 0.999 and 0.976,
respectively. As expected, the sensitivity of our model exceeded
the two traditional prediction methods at the corresponding
specificity control (Table S3).

Comparison with Existing Human−Bacteria PPI Prediction
Methods

To comprehensively understand the pros and cons of a newly
developed predictor, it is essential to benchmark the proposed
method against existing prediction methods. Considering that
the field of human−bacteria PPI predictions is far from mature,
such a method comparison is challenging. To the best of our
knowledge, none of the existing prediction methods provide a
web server to the community. The source code provided by
any existing method does not ensure that the program can be
easily compiled and used properly because of the complexity of
preparing the corresponding features. Here, we compared our
model with a multitask learning-based method32 and a
multilayer neural network based method.30

In the multitask learning-based method, the performance of
their model on a human−Y. pestis PPI data set containing 750
PPIs and 75 000 non-PPIs (the ratio of positive to negative
samples was 1:100) was assessed. We also employed this data
set to test our predictive model. To ensure a fair comparison,
we removed the PPIs in this test set from our training data and
retained 2490 PPIs. In view of the highly imbalanced test set,
the ratio of positive samples to negative samples was set as
1:15 to retrain our model. In the multitask learning-based
method, the performance was primarily measured by the F1
score, which is defined as the harmonic mean of precision and
recall:

= ×
×
+

F1 2
precision recall
precision recall (8)

where precision means the percentage of the true positive
samples among the predicted positives. As shown in Table 4,

Table 4. Performance Comparison of Our Model and Two
Existing ML-Based Human−Bacteria PPI Prediction
Methods

method AUC AUPR F1

positives/
negatives
(training)

positives/
negatives
(test)

Kshirsagar et
al. (2013)a

− − 0.288 1:100 1:100

our modelb 0.867 0.218 0.291 1:15 1:100
Ahmed et al
. (2018)c

0.930 0.926 − 1:1 1:1

our modeld 0.950 0.948 0.896 1:1 1:1

aThe corresponding F1 value was cited directly from Kshirsagar et al.
(2013).32 bThe performance of our model was tested on a data set
containing 750 PPIs and 75000 non-PPIs between human and Y.
pestis. Here, the ratio of positive samples to negative samples used in
the training model was 1:15. cThe corresponding AUC and AUPR
values were cited directly from Ahmed et al. (2018).30 dOur model
was retrained using a data set between human and B. anthracis (554
PPIs and 554 non-PPIs), and the performance was assessed through
10-fold cross-validation.
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the optimal F1 score of our model on the test set was 0.291,
which was slightly better than that of the multitask learning-
based method (0.288). Indeed, the key idea of the multitask
learning-based method was taking the commonality of
interactions between different bacteria and human proteins
into account by employing the pathway information. However,
that method still has limitations regarding the acquisition of
pathway information. Likewise, the GO annotations of the
proteins the authors used to calculate the GO similarity
features are difficult to obtain completely. The authors also
used the host network topology properties as the feature, but
we used more network topology properties than they did, and
our integration approach highlighted the importance of this
feature type.
Regarding the multilayer neural network-based method, the

authors used a data set between human and B. anthracis (554
PPIs and 554 non-PPIs) to train their predictive model. To
make a fair method comparison, we downloaded their data set
from ftp://ftp.sanbi.ac.za/machine_learning/ and then rebuilt
our integrative model using these data. Based on the 10-fold
cross-validation, they quantified the performance of their
model through the ROC curves and precision−recall (PR)
curves. Therefore, we also evaluated our model in the same
way (Figure S4 and Table 4). The mean AUC of our model for
human−B. anthracis data was larger than that of their model
(0.95 versus 0.93). In terms of the overall AUPR (area under
PR curve) values, our model also revealed a better perform-
ance. Compared to the multilayer neural network-based
method, our model used a different ML algorithm and
computational framework. In addition to the sequence
encodings, routine host network properties were also used in
their method. Comparatively, we employed more comprehen-
sive network property-based features in our model, especially
the incorporation of the NetSS encoding scheme. In summary,
the above benchmark experiments clearly showed that our
method was fully competitive with these two state-of-the-art
methods.

Web Server

To assist the community, we also built a web server for our
model, which is freely accessible at http://systbio.cau.edu.cn/
intersppiv2/ or http://zzdlab.com/intersppiv2/. The web
server was implemented on a Linux operating system with
CentOS-6.9 and Apache 2.2.15. Users need submit human and
bacteria protein sequences in FASTA format; the web server
will then calculate the prediction scores of all possible
sequence pair combinations. In general, it takes approximately
1 min to complete the prediction for one protein pair.
Considering that the ratio of positive to negative samples are
highly imbalanced in the real world, it is important to set
prediction thresholds at high-specificity controls so that we can
ensure that the prediction results are generally reliable (i.e., the
prediction yields a relatively high precision). Therefore, we
provided three optional Specificity thresholds (0.95, 0.97, and
0.99) in the web server. A larger threshold generally
corresponds to a higher prediction precision, but it also results
in missing the detection of more true positives. The training
data and independent test data used in this work are
downloadable through the web server.

Current Limitations

Although the proposed method improves the prediction of
human−bacteria PPIs, it has certain limitations in real
applications. For instance, if the query human protein is not

present in the human PPI network, our model would be invalid
or the prediction result would be inaccurate. Indeed, this is a
common phenomenon in the prediction of PPIs. We also
noticed that an assessment based on balanced samples only
may overestimate the performance in practical use due to the
highly skewed ratio of positive to negative data in the real
world. We conducted the following two computational
experiments to elaborate this open issue. In the first
experiment, we used the model trained on balanced positive
and negative samples to assess its performance on two test data
sets, with positive and negative sample ratios of 1:5 and 1:10.
In terms of the ROC curves, the performance on these two
data sets was quite similar (Figure S3a,b). When calculating
the precision values at a 10% FPR control, the precision value
decreased from 0.600 in the 1:5 independent test set to 0.426
in the 1:10 independent test set. Therefore, for practical use,
one should choose high-specificity controls to ensure a
reasonable precision control, which is suggested in our web
server. Additionally, the ratio of positives to negatives in the
test sets should be identical to ensure a fair comparison among
different prediction methods, which was implemented when
we compared the proposed method to the multitask learning-
based method32 and the multilayer neural network based
method.30 In the second computational experiment, we
retrained the models based on two different ratios of positive
to negative data in the training set (1:5 and 1:10), and tested
their performance through 5-fold cross-validation (Figure
S3c,d). The results showed that the ratio of positive to
negative samples in the training data only slightly affect the
ROC curves. We also observed minor precision changes based
on different ratios of positives to negatives in training.
Regarding the precision values at a 10% FPR control in the
1:5 test sets, the precision value increased from 0.600 (inferred
from the balanced training set) to 0.613 (inferred from the 1:5
training set). This phenomenon suggests that a balanced
positive-to-negative ratio may be not the optimal ratio, but it is
reasonable enough to be commonly used in PPI prediction. As
an open issue regarding the ML-based PPI prediction, the ratio
of positives to negatives should be further taken into account
in model training and performance assessment.

■ CONCLUSIONS
In this work, we have developed an RF-based predictor of Y.
pestis PPIs. The highlights of the current work are summarized
as follows. First, two comprehensive host network-property-
related feature vectors reflecting the biological significance of
HP-PPIs in network biology were adopted. Second, a suitable
computational framework was selected to construct the
predictive model. Third, rigorous benchmark experiments
were conducted to quantify the performance of our proposed
predictor. Finally, a web server that implements the proposed
predictor has been made freely accessible to the community.
Regarding future developments, the ML-based HP-PPI
prediction will be more prosperous with the accumulation of
experimental HP-PPI data. To provide reliable PPI prediction
between human and any pathogenic bacteria, both generic and
species-specific human−bacteria PPI predictors should be
developed. Some advanced machine learning algorithms (e.g.,
deep learning)69 have been applied in intraspecies PPI
prediction, and this should also be rapidly employed to predict
human−bacteria PPIs. Taken together, we hope this work will
provide a useful tool to identify potential interactions or to
prioritize targets for further experimental validation, which will
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be helpful for achieving a more comprehensive understanding
of the underlying mechanisms of bacterial infection and will
provide new hints for drug development.
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