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Abstract

While deep learning (DL)-based models have emerged as powerful approaches to predict protein–protein interactions (PPIs), the reliance
on explicit similarity measures (e.g. sequence similarity and network neighborhood) to known interacting proteins makes these
methods ineffective in dealing with novel proteins. The advent of AlphaFold2 presents a significant opportunity and also a challenge
to predict PPIs in a straightforward way based on monomer structures while controlling bias from protein sequences. In this work,
we established Structure and Graph-based Predictions of Protein Interactions (SGPPI), a structure-based DL framework for predicting
PPIs, using the graph convolutional network. In particular, SGPPI focused on protein patches on the protein–protein binding interfaces
and extracted the structural, geometric and evolutionary features from the residue contact map to predict PPIs. We demonstrated that
our model outperforms traditional machine learning methods and state-of-the-art DL-based methods using non-representation-bias
benchmark datasets. Moreover, our model trained on human dataset can be reliably transferred to predict yeast PPIs, indicating that
SGPPI can capture converging structural features of protein interactions across various species. The implementation of SGPPI is available
at https://github.com/emerson106/SGPPI.
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Introduction
The accumulation of protein–protein interaction (PPI) network
data provides the mechanistic understanding of complex cellular
events in biological systems [1, 2], playing a vital role in drug dis-
covery and therapy development [3, 4]. Experimental approaches
for the large-scale identification of PPIs in model organisms have
been in progress over the past few decades [5]. Although often
regarded as the golden standard, the experimental determina-
tion of PPIs depends on specific experiment conditions, leaving
their coverage often limited. As experimental methods are often
time-consuming and labor-intensive, in silico approaches, such as
machine learning (ML)-based methods, have become increasingly
popular to provide testable hypotheses and as the supplement
[6, 7].

ML models predict novel interactions by learning hidden fea-
tures of known PPIs and are often based on the similarity crite-
ria, which assume that proteins sharing a common interaction
partner should contain common characteristics. Such properties
usually capture the physicochemical properties of amino acid
sequences, structural similarity, evolutionary identity, PPI network

partners or topological properties [8–10], with protein sequence
features enjoying the greatest popularity. As the primary struc-
tures of proteins, amino acid sequences largely encode the func-
tions of proteins. Considering that protein sequences are abun-
dant, many research efforts utilized protein sequence features to
predict PPIs. In 2005, Martin et al. developed a signature molecular
descriptor to encode protein sequences to predict PPIs with a
support vector machine (SVM) classifier [11]. Similarly, Shen et al.
proposed the conjoint triad (CT) descriptors to represent the com-
position of amino acid sequences in a compact framework [12].
Since CT descriptors are not suitable to capture the long-range
interactions of residues which are important for the description
of PPIs [13], Guo et al. developed an auto covariance encoding
strategy to reflect the neighboring effects of residues. Other com-
ponent frequency-based coding strategies, such as composition-
transition-distribution and composition of k-spaced amino acid
pairs (CKSAAP), were also widely used in PPI predictions [14, 15]. In
2012, Pitre et al. developed PIPE2, which estimates the polypeptide
sequence similarity between query proteins and known PPIs to
determine whether two proteins interact [16].

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbad020/6995378 by C

hina Agricultural U
niversity user on 23 January 2023

https://orcid.org/0000-0002-9296-571X
https://github.com/emerson106/SGPPI


2 | Huang et al.

Although sequence-based approaches have proven to be effec-
tive, encodings of interacting protein sequences alone cannot
fully capture all PPI-relevant information. For example, evolution-
ary profiles of sequences and structures provide additional fea-
tures beyond sequence composition, which allows more powerful
PPI prediction. Specifically, Zahiri et al. represented the interact-
ing proteins with position-specific scoring matrices (PSSMs) [17],
while Hamp and Rost [18] used evolutionary profiles showing
increased prediction performance and robustness.

Deep learning (DL) technologies have recently been applied
to predict PPIs [19–21]. In particular, multilayer perceptrons and
convolutional neural networks can predict PPIs by embedding
protein sequence characteristics [22–24]. Natural language pro-
cessing methods were also used to effectively convert amino
acid sequences into high-dimensional vectors for PPI predictions
[25, 26]. DL models can also be jointly used to better leverage their
strengths. For instance, Chen et al. combined the advantages of
both convolutional and recurrent neural networks to predict PPIs,
capturing both local significant features and sequence character-
istics from the primary protein sequences [27].

Still, such largely sequence-based prediction models discount
for protein structural features, but proteins actually exert their
functions by folding into three-dimensional (3D) structures that
bind other molecules in the 3D structural space. To this end,
Zhang et al. developed a successful structure-informed PPI predic-
tion method by first searching a complex template for the query
protein through sequence and structural alignment and then
predicting the interaction probability via a Bayesian classifier
[10, 28]. While the most prominent obstacle to include protein
structural features for PPI predictions had been the scarcity of
accurate large-scale protein structures, the recent development
of AlphaFold2 [29] allows the prediction of protein monomer
structures from protein sequences with an accuracy comparable
to experiment methods, offering an avenue to account for protein
structures in the prediction of PPIs.

Compared with linear sequences, protein 3D structures are
more challenging in feature extraction due to their complex
topologies. To address this issue, a frequently used strategy is to
convert the protein structures into residue networks or graphs in
which residues can be regarded as nodes, while residue contacts
are regarded as edges. Graph convolutional network (GCN) is
one of the most popular DL models in capturing structural rela-
tions among such graph-structured data. In the field of protein
bioinformatics, GCN has been widely used for protein binding
interface predictions, protein function annotation and drug dis-
covery [30]. For example, Torng et al. trained a GCN model to
extract features from protein pocket and ligand graph repre-
sentations and achieved competitive performance on the com-
mon virtual screening benchmark datasets [31]. Gligorijevic et al.
achieved rapid prediction of protein functions from computation-
ally inferred structures by integrating GCN and a natural language
model [32]. Recently, Yuan et al. developed a GCN-based model to
predict the residues that are likely to be involved in interacting
with other proteins [33]. Although the interacting partner proteins
of these residues were not specifically predicted in this model,
its sound performance at least indicated that GCN could serve
as a promising architecture for depicting interacting residues. On
the other hand, it is therefore interesting to explore how the GCN
representation of residue networks could better describe the inter-
actions between specific protein pairs and predict specific PPIs.

To this end, in this work, we established a GCN-based PPI pre-
diction model, Structure and Graph-based Predictions of Protein
Interactions (SGPPI). To learn the structural patterns of PPIs, SGPPI

considered both the global structural characteristics of proteins
and the local structural features from the patches at the potential
protein interaction interfaces. Moreover, SGPPI also incorporated
the evolutionary profiles into the structural representation of
PPIs to improve its performance. In the following sections, we
will first introduce the construction of benchmark datasets and
the implementation of SGPPI. The performance assessment of
the proposed model and the corresponding analysis will then be
described.

Materials and methods
Construction of benchmarking datasets
We regarded the PPI prediction task as a pair-input problem,
indicating that each pair of instances (proteins) is the item of
input to the model. Such pair-input problems often have specific
requirements for both the dataset and the model architecture. As
for the training and testing datasets, as Park and Marcotte have
mentioned [34], the predictive performance of pair-input methods
may be overestimated due to shared instances (proteins) between
training and test sets [34]. In other words, a classical PPI prediction
model, which was trained on a dataset with many frequently
presented similar proteins, is prone to detect interactions as the
consequence of over-representation of proteins that are more
likely to be involved in PPIs (e.g. hubs in the PPI network) rather
than predicting specific PPIs. To avoid such representation bias, we
employed three rigorous benchmarking datasets [Profppikernel
dataset, Human Reference Interactome (HuRI) dataset and (fil-
tered) Pan’s dataset] to benchmark the performance of different
PPI prediction methods, as specified below.

Compiled by Hamp and Rost [18], Profppikernel dataset cap-
tured both human and yeast PPI data, which were collected
from reliable human and yeast interactions as of the Hippie V1.2
(10/2011) [35] and Database of Interacting Proteins [36], respec-
tively. To limit the influence of sequence similarity of proteins,
the sequence redundancy of interacting proteins was removed by
setting the sequence identity threshold to 40%. After the applica-
tion of such rigorous sequence similarity limits, 842 human PPIs
and 746 yeast PPIs remained.

HuRI human dataset and Pan’s dataset were collected as the
two alternative datasets for further benchmarking the perfor-
mance of SGPPI. HuRI human dataset was based on the HuRI Map-
ping Project, which detected 64 000 PPIs involving 9000 human
proteins by high-throughput yeast two-hybrid screens [37]. This
comprehensive PPI map makes it possible to build a larger bench-
marking dataset for PPI predictive models. We followed Profp-
pikernel’s strategy [18] and constructed a non-representation-
bias dataset containing 1706 PPIs. The original Pan’s dataset [38]
(http://www.csbio.sjtu.edu.cn/bioinf/LR_PPI/Data.htm) was based
on the Human Protein References Database (HPRD, 2007 version)
and has been frequently used as the benchmarking dataset for PPI
predictions [26, 27, 39]. We also followed Profppikernel’s strategy
to filter Pan’s dataset and converted it into a non-representation-
biased dataset that covered 1160 PPIs.

We applied 10-fold cross-validation to evaluate the perfor-
mance of our PPI prediction model. In all three benchmark
datasets, the interacting pairs of proteins were divided into
10 subgroups for cross-validation. For each subgroup, we
randomly sampled 10 times as many negative interactions as
positive ones, ensuring that all these samples were sequence-
dissimilar to positive training PPIs in the given subgroup. In this
work, we plotted the Precision-Recall (PR) curve to reflect the
overall relationship between precision and recall when different
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predictive thresholds are applied and mainly used the area under
PR curve (AUPRC) to quantify the predictive performance. We also
plotted the receiver operating characteristic (ROC) curve to reflect
the relationship between sensitivity and specificity and used the
area under ROC curve (AUROC) for performance measurement. In
addition, we also introduced three common performance metrics
(i.e. Precision, Recall and F1-score) for method evaluation and
comparison. These three metrics are defined as

Precision = TP
TP + FP

, (1)

Recall = Sensitivity = TP
TP + FN

, (2)

F1 = TP
TP + FP

, (3)

where TP, TN, FP and FN represent the number of true positive,
true negative, false positive and false negative samples, respec-
tively.

Computational framework of SGPPI
SGPPI used a Siamese network architecture to represent and
predict the interacting proteins (Figure 1), where each protein was
characterized separately. In the feature representation module,
each protein was represented by a contact map of protein residues
based on the 3D structure as provided by AlphaFold2. Such an
undirected network of residues was further refined by contacts
between the patch residues on protein surfaces that are close
to each other and likely to contain protein binding hotspots. To
capture more local and evolutionary information conducive to
protein binding, each residue was further annotated by the corre-
sponding values in the PSSM profile and location in the underlying
protein secondary structure. After a series of graph convolutions
of such protein information, the resulting feature vectors of inter-
acting proteins were merged to predict the presence (absence) of
an interaction between a pair of proteins through fully connected
layers.

Graph representation of protein structures
As residue contact maps were used to represent protein 3D struc-
tures, we collected the 3D atomic coordinates of all proteins in the
benchmark dataset from AlphaFold Protein Structure Database
(https://alphafold.ebi.ac.uk/). Considering that not all residues
contribute equally to PPIs, we discarded residues buried inside
the protein structure by discarding residues with relative solvent
accessibility <0.2 [40].

Numerous studies have shown that certain patches on the
protein surfaces tend to contain protein binding hotspots, and
residues in such patches tend to be more hydrophobic and
more conserved than other residues [41–43]. In particular, the
surface and patch residues determine the structural properties of
the protein, suggesting that such residues can further improve
our contact map. Here, we used JET2 [44] to recognize the
patches on protein surfaces, where we defined a graph G = (V,
E), where V represents all the considered surface residues, and E
denotes residue-residue contacts. A contact was identified if the
geometrical distance of any two residues’ Cα atoms is less than a
certain threshold (default 10 Å), allowing us to represent a protein
structure by an undirected graph of the surface/patch residues.
Subsequently, amino acid sequence, protein secondary structures,
geometric features and evolutionary information features were
encoded and mapped onto every node (i.e. every residue) in

the undirected graph and were finally integrated into our GCN
framework.

Feature encodings
PSSM encoding evolutionary information
We used PSSM profiles to reflect the conservation and muta-
tion profile of each amino acid residue, which corresponds to a
20-dimensional vector, reflecting the conservation of 20 amino
acids at the corresponding position among a set of homologous
sequences. PSSM profiles were generated by PSI-Basic Local Align-
ment Search Tool [45] search against the NR90 database (version
of November 2019) at NCBI with three iterations and E-value
cutoff of 0.0001.

JET2 features encoding local and global geometrical
information
JET2 is a dedicated protein surface patch identification algorithm,
which divides each protein interface into three structural regions,
called seed, extension and outer layer, from the core part to
the rim part [44]. The seeds of proteins in our datasets were
identified by computing the conservation level of every residue in
the protein sequences. Then, JET2 extended the interface patches
based on these seeds by combining the evolutionary traces of
each residue, interface propensities and circular variances (CVs)
computed from the protein structure. We introduced the above
features as a five-dimensional vector to characterize each node
(surface residue) in the residue contact map. First, we used one
binary byte to indicate whether the residue belongs to the protein
interface calculated by JET2 and used two values to reflect the
accessibility at the atomic and residue levels, respectively. Second,
CV measures the vectorial distribution of a set of neighboring
points around a fixed point in 3D space. Accordingly, the last
two values in the five-dimensional vector of each residue were
the global CV and local CV calculated by JET2, which described
the geometry of the entire protein surface and local residues,
respectively. Overall, the five JET2 descriptors well portrayed the
geometric features of proteins at various levels, which enrich
the node characteristics of the residue contact map from the
perspective of structural interactions.

One-hot encoding of protein secondary structural
information
DSSP [46, 47] was used to identify the secondary structures of the
given proteins. The secondary structures were captured by eight
states in DSSP, suggesting an eight-dimensional one-hot vector to
characterize the secondary structure state of each residue.

Graph convolutional neural network
In this work, we utilized GCN to propagate and extract the hidden
features from protein structures. Given a protein that is repre-
sented by a (surface) residue contact map with n nodes, the input
of GCN includes two parts: an adjacency matrix A ∈ R

n∗n and a
node feature matrix X ∈ R

n∗m, where m is the length of the feature
vector of residues (m = 33 in this work). We applied two-layer GCN
to update the hidden features of residues using the following
update rule:

H(l+1) = σ(
∼
D

− 1
2 ∼
A

∼
D

− 1
2

H(l)W(l)), (4)

where H denotes the hidden state in the convolution process
and l ∈ {0,1}, W(l) denotes the weight matrix associated with the
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Figure 1. Overview of SGPPI workflow. SGPPI uses a Siamese network architecture to represent and predict interacting proteins. By identifying the
interface patches and nearby surface residues, each protein is characterized by its monomer structures predicted by AlphaFold2 through a contact
network map of residues at a certain threshold. We refined such a map with node features, including (i) evolutionary information of the residue through
PSSMs; (ii) location in the underlying protein secondary structure and (iii) global and local geometrical descriptors. Merging feature vectors of interacting
proteins after a series of graph network convolutions, we predict the interaction probability of a given protein pair through fully connected layers.
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lth-layer of the GCN. We applied ReLU as the nonlinear activation

function. Finally,
∼
Ais computed as the following equation:

∼
A = A + I, (5)

where A denotes the adjacency matrix.
∼
D in Equation (1) is the

diagonal degree matrix of
∼
A. After convolution, the average hid-

den feature of all residues contains the concerned information
of the given protein. For the pair-input proteins, a Siamese-like
architecture obtains the well-extracted features s1 and s2 through
a parameter-sharing GCN. The probability of interaction for the
given pair proteins yout was calculated by

yout = SoftMax
(
f
(
s1 � s2)) , (6)

where � denotes the Hadamard product and f denotes the fully
connected feedforward neural network.

Baseline methods for predicting PPIs
Baseline encoding strategy
We applied two typical composition-based encoding schemes
as the baseline descriptors of protein sequences: (i) amino acid
composition (AAC) reflects the percentage of 20 standard amino
acids in a given protein sequence, which is formulated as follows:

AAC = (
f1, f2, · · · , f20

)
, (7)

where fi is the ratio of a certain kind of amino acid over all amino
acids in the given protein. (ii) CKSAPP is the rate of k-spaced
amino acid pairs normalized by all possible 400 kinds of pair
combinations. CKSAAP can be formulated as

CKSAAP =
(
f0
1 , f0

2 , · · · , f0
400, f1

1 , f1
2 , · · · , f1

400, · · · , f k
1 , f k

2 · · · , f k
400

)
, (8)

where f is the ratio of a specific k-spaced amino acid pair over
all possible pairs in the given protein. In this work, we set k = 0,
1, 2, 3, pointing to the representation of a protein sequence as a
1600-dimensional vector.

Baseline ML methods
Random forest (RF) and SVM are two classical ML methods com-
monly used for various bioinformatics prediction problems. We
compared these two classical methods with SGPPI as the baseline
methods in this work. RF and SVM were implemented through
the sklearn library in Python. Grid search was used to optimize
the parameters in RF and SVM. Specifically, in the RF model with
CKSAAP encoding, the optimized n_estimators and max_depth
were 300 and 12, respectively. In the RF model with AAC encod-
ing, the optimized n_estimators and max_depth were 100 and 9,
respectively. In the SVM model, we chose the commonly used ‘rbf’
as the kernel function, and the optimized C and gamma were 0.1
and 16, respectively.

Results
The overall performance benchmarking strategy
To measure the prediction performance of SGPPI, we mainly
used PR and ROC curves to measure the performance of the
predictors through 10-fold cross-validation on the following three
PPI datasets. The Profppikernel human dataset has been widely
used to test the performance of PPI prediction methods [18, 48],

Table 1. Performance of different state-of-the-art PPI prediction
methods on the Profppikernel dataset

Methods AUPRCa

SGPPI 0.422
Profppikernelb 0.359
PIPRc 0.342
PIPE2b 0.220
SigProdb 0.264

aAUPRC denotes the average AUPRC value of 10-fold cross-validation.
bResults were retrieved from Hashemifar et al. [48]. cWe implemented PIPR
using the source code on Github (https://github.com/muhaochen/seq_ppi)
and chose the embedding vector that performed the best on the benchmark
dataset.

which holds 842 positive and a corresponding set of 8420 negative
PPI samples. To test the performance of the predictors more
comprehensively, we also collected experimentally verified PPIs
from the HuRI Mapping Project [37] and HPRD as two unbiased
larger dataset alternatives (i.e. HuRI dataset and Pan’s dataset). By
adopting the same rigorous dataset preparation strategy against
protein instance redundancy, each dataset does not allow proteins
with similar sequences to appear in the training and the test sam-
ples. While all proteins in the test samples were dissimilar com-
pared to the positive training samples, proteins in the test samples
and negative training samples can be similar. As a consequence,
any predictive model cannot predict PPIs simply by similarity to
known proteins in the training PPIs, suggesting that all these three
datasets are non-representation-bias benchmarking datasets.

Performance assessment on Profppikernel
human dataset
To assess the predictive power of SGPPI, we compared its perfor-
mance to methods that were already tested on the human Profp-
pikernel dataset [48], including sequence-based methods such as
Profppikernel, PIPE2 and SigProd. Briefly, Profppikernel [18] used
evolutionary profiles, while SigProd [11] represented a sequence
by 3-mers to classify the interactions between proteins through
a SVM. PIPE2 predicted a PPI if subsequences of the interacting
proteins occur more frequently in the positive training set [16]. We
also compared the performance of SGPPI against a recent state-
of-the-art approach, PIPR, which used a deep residual recurrent
convolutional neural network (CNN) to capture both local features
and the contextualized information of protein sequences. Notably,
PIPR was reported to achieve the best performance in comparison
to other state-of-the-art methods when predicting binary PPIs
[27]. As the positive/negative data are imbalanced, PR curves
are preferred over ROC curves as a comprehensive performance
measure. In particular, we observed that SGPPI that integrates the
sequence, evolutionary, structural and geometric information of
proteins through GCN significantly outperforms all four state-of-
the-art methods on the Profppikernel human dataset utilizing the
AUPRC metric (Table 1).

Performance benchmarking on alternative
datasets
We introduced two alternative datasets (i.e. HuRI dataset and
Pan’s dataset) to further assess the performance of SGPPI. In par-
ticular, we compared the performance of SGPPI to more traditional
ML approaches, such as RF and SVM, where we represented the
sequences of interacting proteins through vectors of AAC and
CKSAPP. While traditional ML methods with routine encoding
schemes failed to perform well on both HuRI datasets (Figure 2A

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbad020/6995378 by C

hina Agricultural U
niversity user on 23 January 2023

https://github.com/muhaochen/seq_ppi


6 | Huang et al.

Figure 2. Prediction performance through 10-fold cross-validation on two alternative datasets. (A, B) Performance on the HuRI human dataset.
(C, D) Performance on the Pan’s dataset. Utilizing (A, C) AUPRC and (B, D) AUROC as prediction performance metrics, we observed that SGPPI clearly
outperforms more traditional PPI prediction methods, including random forests (RF) and SVM, where the interacting sequences were represented by
vectors of AAC and k-spaced amino acid pairs (CKSAPP). Paired t-test was used to determine the statistical significance in the performance of two
models.

and B) and Pan’s dataset (Figure 2C and D), the PR curves and ROC
curves suggest that SGPPI generally outperformed the state-of-
the-art DL model PIPR in these two more comprehensive datasets.
By introducing more performance measurements, Tables 2 and
3 further quantify the performance of SGPPI in comparison to
two traditional ML models and the PIPR method, highlighting the
substantially better precision and F1-socre of SGPPI.

Analyzing the informative characteristics
of SGPPI
The construction of the residue contact map as of AlphaFold2 is
the key step in representing the underlying protein structure. Two
residues were considered to be in contact if the Cα atom distance
of any two residues is less than a certain threshold. Specifically,
we identified 10 Å as the best distance cut-off among several
thresholds by cross-validation test on the Profppikernel human
datasets (Figure 3A).

We also paid attention to the contribution of structural
information to the performance of SGPPI. This structural
information was encoded through a residue contact map derived
from monomer structures as well as through residue-specific

structural features of each node in the residue contact map. By
assessing the importance of per residue structural features
by an ablation experiment, we first observed that removal of
structural features substantially reduced the model’s perfor-
mance even if the original residue contact maps were totally
retained (Figure 3B). Moreover, as intuitively expected, the residue
contact map also substantially contributed to the structural
representation of interacting proteins. In particular, we kept
the edges in the contact map fixed to hold the global degree
distribution constant but shuffled all the nodes’ positions (i.e.
degree preserving shuffling). To ensure sufficient randomization,
the new position of each node after shuffling should be different
from the original one. We retrained our model on the permutated
residue contact map, and the result demonstrates that the
permutation of residue contact map could lead to a sharp decline
in the performance of SGPPI where the mean AUPRC decreased
from 0.4225 to 0.3118 (Figure 3B).

Finally, as for the selection of nodes in the residue contact map,
we provided an example of human non-classical major histocom-
patibility complex to illustrate the importance of the inclusion of
protein surface patches. HLA class I histocompatibility antigen,
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Table 2. Prediction performance metrics evaluated through 10-fold cross-validation on the HuRI dataset

Methods AUROCa AUPRCa Precisiona,b Recalla,b F1-scorea,b

SGPPI 0.765 0.293 0.309 0.411 0.355
PIPR 0.720 0.225 0.235 0.417 0.314
RF + CKSAAP 0.624 0.135 0.122 0.358 0.184
RF + AAC 0.656 0.166 0.159 0.363 0.211
SVM + CKSAAP 0.639 0.155 0.147 0.357 0.206

aAll the metrics shown in the table were the average value of 10-fold cross-validation. bWe used the threshold corresponding to the max F1-score to
determine the values of TP, FP, TN and FN.

Table 3. Prediction performance metrics evaluated through 10-fold cross-validation on the Pan’s dataset

Methods AUROCa AUPRCa Precisiona,b Recalla,b F1-scorea,b

SGPPI 0.750 0.327 0.319 0.478 0.375
PIPR 0.688 0.216 0.225 0.475 0.302
RF + CKSAAP 0.624 0.135 0.122 0.358 0.187
RF + AAC 0.656 0.166 0.159 0.363 0.223
SVM + CKSAAP 0.639 0.155 0.147 0.357 0.210

aAll the metrics shown in the table were the average value of 10-fold cross-validation. bWe used the threshold corresponding to the max F1-score to
determine the values of TP, FP, TN and FN.

Figure 3. Analysis of informative structural features in SGPPI. (A) Performance comparison of the SGPPI model on the Profppikernel dataset using three
different thresholds to construct the residue contact map. (B) Ablation experiments show the contribution of various structural features to the model
performance of SGPPI. Paired t-test was used to determine the statistical significance in the performance of two models. (C) Indicating the importance of
patch residues, we determined the interaction score between B2M and HLA-E with SGPPI using the actual (left panel) and randomly sampled patches on
the protein surfaces (right panel). Notably, the prediction score considerably drops as a consequence of disrupting such residue patch information. The
patch resiudes are highlighted on the protein surface representations.

alpha chain E (HLA-E) participates in the presentation of peptide
antigens to the immune system with beta-2-microglobulin (B2M).
We randomly selected the partial residues of HLA-E as protein

patches to build a factitious residue contact map. Compared
with the original patches, the predicted interaction score based
on random patches decreased significantly, which proved the
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Figure 4. Performance of different prediction methods in the cross-species test. We trained several sequence-based methods and SGPPI on the human
interaction data and tested such models for their ability to predict PPIs in yeast. In particular, we utilized RF and SVMs, where we represented interacting
proteins through CKSAPP. PR and ROC analysis clearly indicated that the naive transfer of the SGPPI model was less sensitive to the underlying encoded
structural information than the sequence information. The dashed lines in panels (A) and (B) show the performance of random prediction, and the
corresponding AUPRC and AUROC are 0.091 and 0.500, respectively.

importance of local structural information on the protein surface
patches in protein structural representation (Figure 3C). Together,
a modest to high performance reduction can be observed with the
perturbation of various informative structural features.

Cross-species prediction test
Protein sequence composition could differ substantially in dif-
ferent species, while the protein structures are relatively more
conserved. As the prediction model of SGPPI largely relies more on
structural than sequence information, we surmised that naively
transferring a trained model to predict PPIs in a different species
may be more reliable than sequenced-based methods. To check
this hypothesis, in particular, we tested the cross-species pre-
dictive ability of SGPPI and other sequence-based approaches by
training on the human HuRI dataset with a larger amount of non-
representation-biased PPIs and predicted PPIs in yeast using the
Profppikernel yeast dataset as a testing standard. As proteins from
different species were used for training and testing, traditional
sequence encoding-based ML methods, such as RF and SVM, that
used CKSAAP encoding of protein sequences could hardly cope
with such a difficult task (Figure 4 and Supplementary Table S1
available online at http://bib.oxfordjournals.org/). In turn, SGPPI
performs on a par with human PPI prediction (Figures 2 and 4),
suggesting that the encoded structural information is more robust
and conducive to find PPIs across species.

Discussion and conclusion
Identification of PPIs is critical for understanding the functional
mechanisms of proteins. The prediction of PPIs by computational
methods has continuously been an important topic in the field
of bioinformatics. However, traditional ML models are susceptible
to the bias in the dataset. Specifically, these models are often
overestimated when there are certain shared protein components
between the training and test sets. Therefore, classical prediction
scenarios are not suitable to evaluate the performance in predict-
ing novel PPIs or in cross-species PPI predictions. In this work,
we constructed the rigorous datasets where both negative and
positive test protein pairs were allowed to be sequence-similar to

negative training protein pairs but were obligate to be sequence-
dissimilar to any training PPIs. The prediction in such a rigorous
scenario is much more meaningful for dealing with novel proteins
predictions and cross-species predictions.

By using the rigorous benchmarking datasets, we introduced
a GCN-based framework, SGPPI, to deal with the PPI prediction
issue. With the advent of AlphaFold2, protein structures can be
easily obtained, which provides more intuitive and robust infor-
mation to predict PPIs. SGPPI first calculated the residue contact
maps according to these protein structures. We regarded the
residue contact map as an undirected graph with the residues
as nodes and the residue contacts as edges. Instead of simply
utilizing the commonly used sequence feature representations,
we regard the protein as a collection of protein interface patches
and integrated the global and local structural features of each
residue in these patches. Besides, a comprehensive set of protein
sequence and structural features have been considered, including
residue conservation information, protein secondary structure
types and global and local geometrical descriptors. By assigning
the nodes in the residue graph with rich biological features, the
information of protein deposited in the graph is further integrated
and enriched. Further, GCN can effectively spread and update the
information of the node features through the connection in the
graph. More than the basic GCN structure, to deal with the pair
input prediction problem, the DL model of SGPPI achieves coupled
feature extraction of two input proteins through a Siamese-like
GCN architecture and then predicts the interaction probability of
the given protein pair through feature merging and full connec-
tion layers.

By comparison with previous sequence-based PPI methods
under the challenging datasets without representation bias, SGPPI
has exhibited strong robustness and a high precision. This result
suggested that the introduction of structural information can
indeed improve the performance of PPI prediction while con-
sidering sequence and evolutionary information. In particular,
the contribution of protein patches to the prediction of PPIs has
been demonstrated in ablation experiments (Figure 3B and C).
The results of cross-species prediction also confirmed that the
structural information in predicting PPIs can effectively deal with
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novel proteins. It is also noteworthy that the absolute perfor-
mance metrics of SGPPI (AUPRC or other metrics) are heavily
dependent on the rigorous nature of the datasets using the strin-
gent Profppikernel’s strategy. If we used the original Pan’s dataset
preparation where Profppikernel’s strategy was not applied, a very
striking performance could be achieved (Supplementary Table S2
available online at http://bib.oxfordjournals.org/). But as stated
above, for the evaluation for novel PPI prediction, rigorous sce-
nario is deemed essential [18, 34] and performance improvement
achieved by SGPPI on the rigorous datasets could be considered to
be substantial. We believe SGPPI can provide novel approaches for
the effective introduction of structural information and hope that
the development of SGPPI will further promote the development
of PPI prediction.

Key Points

• SGPPI is a structure-based DL framework for predicting
PPIs using graph convolutional neural networks.

• SGPPI integrates both global and local features of struc-
tures and applies convolutions on residue contact maps
to capture the characteristics of proteins.

• SGPPI achieved a competitive performance in rigorous
benchmark datasets compared with state-of-the-art DL-
based methods.

Supplementary data
Supplementary data are available online at https://academic.oup.
com/bib.

Data availability
The data underlying this article are available in Figshare, at
https://dx.doi.org/10.6084/m9.figshare.20353353. The source code
is available in GitHub, at https://github.com/emersON106/SGPPI.
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