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Abstract

The identification of human-herpesvirus protein–protein interactions (PPIs) is an essential and important entry point to understand
the mechanisms of viral infection, especially in malignant tumor patients with common herpesvirus infection. While natural language
processing (NLP)-based embedding techniques have emerged as powerful approaches, the application of multi-modal embedding
feature fusion to predict human-herpesvirus PPIs is still limited. Here, we established a multi-modal embedding feature fusion-
based LightGBM method to predict human-herpesvirus PPIs. In particular, we applied document and graph embedding approaches to
represent sequence, network and function modal features of human and herpesviral proteins. Training our LightGBM models through
our compiled non-rigorous and rigorous benchmarking datasets, we obtained significantly better performance compared to individual-
modal features. Furthermore, our model outperformed traditional feature encodings-based machine learning methods and state-of-
the-art deep learning-based methods using various benchmarking datasets. In a transfer learning step, we show that our model that was
trained on human-herpesvirus PPI dataset without cytomegalovirus data can reliably predict human-cytomegalovirus PPIs, indicating
that our method can comprehensively capture multi-modal fusion features of protein interactions across various herpesvirus subtypes.
The implementation of our method is available at https://github.com/XiaodiYangpku/MultimodalPPI/.
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INTRODUCTION
Herpesviruses are ubiquitous and latently transmitted in eukary-
otes. Herpesvirus infections are usually mild, but can lead to
severe diseases such as encephalitis, birth defects of sensory
nerves and tumors in patients with weak immune responses
[1]. In particular, herpesvirus infection and reactivation com-
monly occur during the development of multiple malignancies
such as hematological malignancies [2–4]. As a consequence of
weak immune responses in populations of e.g. hematopoietic
stem cell transplantation patients, reactivation of herpesviruses
may cause a variety of organ dysfunction (e.g. respiratory failure
caused by cytomegalovirus pneumonia) [5], which may impair the
final curative effect of tumor treatments. Human herpesviruses
(HHV) can be divided into three categories, such as alpha [HHV-1,
HHV-2, varicella-zoster virus (VZV)/HHV-3], beta [cytomegalovirus

(CMV/HHV-5), HHV-6A, HHV-6B and HHV-7], gamma [Epstein–Barr
virus (EBV/HHV-4) and Kaposi’s sarcoma-associated herpesvirus
(KSHV/HHV-8)] subfamilies. Except for HHV-1, VZV and CMV, there
is currently no effective antiviral drug or vaccine for herpesvirus
infections [6, 7]. Herpesvirus infection and host immune response
are largely determined by human-herpesvirus protein–protein
interactions (PPIs) [8, 9]. Therefore, the systematic characteri-
zation and analysis of human-herpesvirus PPIs is essential for
our in-depth understanding of the pathogenic mechanisms of
herpesvirus infection and development of anti-herpesvirus drugs,
effectively improving the prognosis of hematological tumors.

High-throughput experimental techniques such as yeast two-
hybrid and affinity purification mass spectroscopy have identified
a substantial number of human-herpesvirus PPIs [10–12]. How-
ever, such interaction data were mainly found in EBV [10, 11],
CMV [12], KSHV [13, 14] and HSV-1 [15, 16], while PPIs of other
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herpesvirus subtypes are under-investigated. As a consequence,
it is paramount to identify interactions, that provide the basis to
elucidate mechanism differences of interactions between human
host and different herpesvirus subtypes. As the large-scale exper-
imental determination of PPIs is usually time-consuming and
laborious, efficient computational prediction methods can com-
plement experimental methods to provide testable protein pairs
with high confidence.

Numerous computational methods have been previously
developed to predict protein interactions including interolog
mapping [17], domain–domain/motif interaction-based inference
[18] and structure-based prediction methods [19]. Moreover,
machine learning (ML) and artificial intelligence (AI) approaches
have also been employed to predict PPIs, usually pointing to
superior performance compared to more traditional non-ML
methods. Although ML methods have been predominantly applied
to predict intra-species PPIs, a series of inter-species ML-based
human–virus PPI prediction methods have been proposed [20–23].
However, ML-based PPI prediction methods that were specifically
designed for the prediction of interactions between proteins of
human and herpesviruses are still limited. To our best knowledge,
only Lian et al. developed an in silico prediction method that
incorporated interolog mapping, domain–domain interaction-
based inference and ML to predict human-herpesvirus PPIs
[24]. Only focusing on human-HSV-1, they trained a random
forest (RF) model that integrated traditional CKSAAP sequence
features and six network parameters, where the feature encoding
schemes and ML algorithm applied were simple and rather
insufficient to represent protein features and to yield favorable
prediction performance. Moreover, some previous human–virus
PPI prediction models trained on all human–virus interactions,
which may potentially lack specificity for herpesvirus.

ML-based prediction methods are mainly based on two core
steps, capturing feature encoding and model training. Efficient
feature encoding methods fully reflect latent features of samples
and improve model learning efficiency. Commonly used encoding
methods are currently based on sequence information such as di-
peptide composition (DPC) [25], conjoint triad (CT) [26] and auto
covariance (AC) [27], capturing amino acid composition, chemical
properties or residue interaction effects. With the development
of AI methods, several natural language processing (NLP)-driven
embedding methods have been applied to predict PPIs [28]. Specif-
ically, Word2vec is an NLP-driven word embedding technique,
that adopts shallow neural networks to obtain feature vectors
of sequence k-mers [29]. For example, Tsukiyama et al. employed
Word2vec to learn embeddings of amino acid k-mers (i.e. words)
in protein sequences (i.e. sentences) to predict human–virus PPIs
[22]. As an extension of Word2vec, Doc2vec captures the whole
sentence as another method to learn embeddings, considering
context information of the words and the whole sentence. In par-
ticular, our previous work [20] used Doc2vec to obtain embedding
feature vectors of protein sequences (i.e. sentences) to predict
human–virus PPIs. Furthermore, the graph embedding technique
node2vec has been widely used to represent nodes and edges in
biological graphs to classify nodes or predict edges. In particular,
Node2vec uses random walks to generate node sequences from
the graph, which are further fed into the Word2vec model to
find node feature representations. In particular, Liu-Wei et al.
employed a node2vec variant DL2Vec to embed human and viral
proteins through a Gene Ontology (GO) network and disease
phenotype annotations to predict human–virus PPIs [23].

As for model training, various ML algorithms such as RF, sup-
port vector machine (SVM) and convolutional neural networks

(CNN) have been used to predict human–virus PPIs with favorable
prediction performance. In recent years, an ensemble ML algo-
rithm light gradient boosting machine (LightGBM) showed impres-
sive performance in predicting secreted effectors, residue binding
sites and drug-target interactions [30–32], prompting us to intro-
duce LightGBM to predict human-herpesvirus PPIs. Specifically,
we based LightGBM on multi-modal embeddings of sequences,
networks and functions to predict human-herpesvirus PPIs, and
evaluated our model’s performance through non-rigorous and rig-
orous partitions of training and test data that we constructed from
human-herpesvirus PPI datasets. Our results clearly suggested
that our multi-modal features-based integration model shows
superior performance by significantly providing better results
than single-modal features-based models, various ML models
based on different traditional sequence encodings and existing
state-of-the-art human-virus PPI prediction methods.

MATERIALS AND METHODS
A schematic flow chart of our proposed method is shown
in Figure 1. First, we collected protein sequence information,
known interaction networks and gene functional annotations
from UniProt [33], IntAct [34], BioGRID [35], VirHostNet [36],
VirusMentha [37] and GO [38] databases. Subsequently, we
employed different feature extraction methods based on protein
sequences, networks and functions to generate multi-modal
features to train our LightGBM classifier on the merged features.

Dataset construction
We collected human-herpesvirus PPI data from five public molec-
ular interaction databases, including IntAct [34], BioGRID [35],
HPIDB [39], VirHostNet [36] and VirusMentha [37]. In the next
filtering step, non-physical interactions, redundant interactions
and interactions between proteins with less than 30 amino acids,
more than 5000 amino acids or non-standard amino acids were
removed, resulting in 9439 positive sample PPIs. Specifically, our
positive samples involved seven HHVs except HHV-7 (i.e. HHV-
1 ∼ HHV-6 and HHV-8) (Figure 1).

As for negative sample selection, we considered viral and
human proteins that also appeared in the positive training
data sets and human proteome. In particular, we used the
‘Dissimilarity-Based Negative sampling’ [20, 40] method to reduce
the introduction of false negative samples. Specifically, we
inferred a protein pair B-C as a potential interaction that was
not selected as a negative sample if viral proteins A and B were
similar (sequence identity >0.3), assuming that human protein C
interacted with viral protein A.

Furthermore, previous studies [27, 41, 42] indicated that the
predictive performance of pair-input methods may be overes-
timated as a consequence of shared proteins in training and
test sets. In other words, proteins have a higher chance to be
classified as interacting as a consequence of their overrepresen-
tation in the training data. To avoid such a bias, we employed a
rigorous sampling strategy [27, 41] to find negative training data.
Considering 80% of known viral-human PPIs as positive samples
while the remainder served as test set, we randomly sampled 10
times as many negative than positive samples to obtain 94,390
negative samples. In particular, we ensured that viral proteins in
the test set were sequence-dissimilar (sequence similarity <0.3)
compared to the viral proteins in the positive training samples
(i.e. rigorous partition). Moreover, we also provided non-rigorous
training data, by randomly sampling a training and test set, where
viral proteins in the test set were similar compared to the training
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Figure 1. Workflow of human-herpesvirus PPI prediction based on multi-modal features (i.e. sequences, networks and functions). Utilizing interactions
between proteins of different herpesvirus subtypes and human, we employed different feature extraction methods, pertaining to protein sequences,
interactions between proteins and protein functions. In particular, we extracted feature embeddings of protein sequences through Doc2vec, while we
represented interacting proteins through Node2vec and functions through GO2vec to generate multi-modal features of the underlying PPI. Finally, we
trained our LightGBM classifier on the merged features to predict the presence/absence of an interaction between a human and a viral protein.

set. Furthermore, we used three sets of replicates per sampling
strategy to assess the model’s performance.

Feature encodings
Doc2vec
We used the document embedding technique Doc2vec to rep-
resent the context semantic features of protein sequences that
were treated as sentences written in a certain biological lan-
guage. In particular, protein sequences constitute a ‘document’
(i.e. a corpus) and convey biological functions and meanings
that can be semantically interpreted through the Doc2vec model
[43]. First, each amino acid sequence (i.e. sentence) was bro-
ken into k-mer fragments (i.e. words). Subsequently, k-mers of
amino acids and the complete sequence were used to train the
Doc2vec model, allowing us to obtain a fixed-dimensional fea-
ture vector for each protein sequence. Here, we focused on non-
redundant protein sequences from our protein interaction sam-
ples and SwissProt database where we used CD-HIT to remove
redundancy by considering sequence identity of ≤0.5 [44] as cor-
pus of the Doc2vec model training. In our previous work [20], we
applied three methods of k-mer extraction [43, 45]: For instance,
the sequence ‘MPQNEY’ was broken into 2-mers such as [‘MP’,
‘PQ’, ‘QN’, ‘NE’, ‘EY’]; [‘MP’, ‘QN’, ‘EY’], [‘PQ’, ‘NE’]; [‘MP’, ‘QN’,
‘EY’, ‘PQ’, ‘NE’] where the latter extraction method performed
best in predicting human–virus PPIs. Furthermore, we augmented
such k-mers with single amino acid residues (i.e. k = 1). Based on
our previous works [20, 46], we set the baseline parameters i.e.
‘extraction_method’ = 3, k = 5, ‘vector_size’ = 32, window = 3 and
epoch = 70 to optimize them one by one.

We used the python library Gensim [47] to train the Doc2vec
model and adopted the distributed-memory (DM) model architec-
ture of Doc2vec [29], allowing us to characterize each amino-acid
k-mer through a vector of context-specific k-mers and the com-
plete protein sequence vector. Using stochastic gradient descent
and backpropagation to update the weight parameters of the
model, we optimized parameters (e.g. k-mers, window size and
the dimensionality of output vectors) by 5-fold cross-validation
based on the non-rigorous sampling datasets. For each Doc2vec
parameter combination, we trained three LightGBM models on
the three replicates of non-rigorous sampling datasets by using

the extracted feature vectors of Doc2vec. We obtained optimal
parameter combinations of Doc2vec models through averaging
the performance over all three LightGBM models.

Net2vec
Intra-species protein interaction networks were constructed to
characterize network properties of proteins. First, we collected
human protein interactions and herpesvirus protein interactions
from four public protein interaction databases such as IntAct [34],
BioGRID [35], VirHostNet [36] and VirusMentha [37]. In total, we
obtained 329 611 human PPIs between 26 691 human proteins
and 2104 herpesviral PPIs between 706 herpesviral proteins after
removing redundant and genetic interactions. In the next step, we
trained the Node2vec model on the human PPI network and her-
pesvirus PPI network, respectively. Multiple node sequences were
generated through the random walk process, which were further
fed to the Word2vec model to obtain protein node feature vectors.
We calculated the average feature vectors of all proteins in the
human PPI network and the herpesvirus PPI network, respectively.
The average feature vector of human/herpesvirus proteins was
used to characterize the human/herpesvirus proteins that were
not present in human/herpesvirus intra-species PPI networks.
Here, we set the parameters ‘walk length’, ‘numbers of walks’ and
the size of output feature vector of Net2vec model training to 30,
200 and 32, respectively.

GO2vec
We utilized the GO hierarchical network and GO annotation infor-
mation to represent the functional properties of human and
herpesvirus proteins. GO hierarchical relationship and GO anno-
tation data of human and herpesvirus proteins were downloaded
from the GO database (http://geneontology.org/). Subsequently,
we constructed two comprehensive networks containing multiple
nodes (i.e. GO terms and proteins) and edges (i.e. GO term-GO term
and protein-GO term) for human and herpesvirus, respectively.
Similar to the Net2vec encoding scheme, Node2vec was employed
to obtain node embedding features of GO terms and proteins in
the network. When an encoded protein was not in the GO term-
GO term/protein network, we assigned the average vector of the
network protein nodes. Here, we set the parameters ‘walk length’,

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/2/bbae005/7590318 by C

hina Agricultural U
niversity user on 28 January 2024

http://geneontology.org/
http://geneontology.org/
http://geneontology.org/


4 | Yang et al.

‘numbers of walks’ and the size of output feature vector of GO2vec
model training to 30, 200 and 64, respectively.

LightGBM classifier
LightGBM is an ensemble model based on decision trees for
solving various classification and regression problems. Specif-
ically, weak classifiers (decision trees) are iteratively trained
to get the optimal model, that lead to satisfactory training
effects and avoid overfitting. LightGBM is an improved extension
of the gradient boosting decision tree [48], which employs
gradient-based one-side sampling (GOSS) and exclusive feature
bundling (EFB) [49]. GOSS reduces the sample dimension by
sampling with small gradients, while EFB bundles mutually
exclusive features into one novel feature thereby reducing feature
dimensions. As a consequence, LightGBM provides fast model
training, satisfactory high accuracy and classification/regression
generalizability. LightGBM was implemented through the Python-
based ML library scikit-learn. Here, we chose ‘binary’ as the
learning objective and employed the GridSearchCV function to
optimize ‘learning rate’ and ‘max_depth’, capturing optimization
ranges of [0.001,0.01,0.05,0.1,0.15,0.2,0.25,0.3] and [10,50,100,200].

Baseline methods
Baseline encoding approaches
As baselines, we encoded sequences through three typical
sequence-based encoding methods [25–27]: (i) DPC reflected the
ratio of two subsequent amino acid residues in the sequence

through FDPC
(
ai, aj

) = Naiaj

L−1 . ai, aj represented 2 of the 20
standard amino acids, while Naiaj and L were the number of
certain di-peptide in the sequence and the sequence length,
respectively. As a result, each protein pair was encoded by an
800 (20 × 20 × 2)-dimensional feature vector. (ii) CT characterized
the physicochemical features of amino acids in the sequence
through the ratio of a triplet of continuous amino acid classes
in the sequence. Specifically, 20 standard amino acids were
classified into seven groups (AGV, C, DE, EILP, HNQW, KMSTY
and KR) according to their physicochemical properties, providing
a 686 (7 × 7 × 7 × 2)-dimensional feature vector for each protein
pair. (iii) AC considers the interaction effect between amino acid
variables at different positions. Here, seven physicochemical
properties, i.e. hydrophobicity (H1), hydrophilicity (H2), polarity
(P1), polarizability (P2), solvent accessible surface area, net
charge index of side chains and volume of side chains (V) were
employed to represent protein features. In particular, the AC score

SAC was defined as SAC
(
lag, j

) = 1
L−lag

∑L−lag
i=1

(
Ri,j − 1

L

∑L
k=1Rk,j

)
×(

R(i+lag),j − 1
L

∑L
k=1Rk,j

)
, ȷ ∈ (1, 2, . . . , 7), where i and k represented

the ith and kth amino acid residue in the protein sequence while
j was one of the seven physicochemical features. Ri,j and Rk,j

represented the jth physicochemical feature of the ith and kth

amino acid residue. lag was the distance between the ith residue
and its adjacent residue, in which lag was set to 30. Finally, a
420 (30 × 7 × 2)-dimensional feature vector was obtained for each
protein pair.

Baseline ML algorithms
RF and SVM are two classical ML algorithms that have been
widely used in various binary classification tasks. Furthermore,
we also employed a deep learning architecture i.e. multi-
ple layer perceptron (MLP) as another baseline algorithm to
compare. These ML algorithms were implemented through
the Python-based ML library scikit-learn and deep learning
library keras. For all ML algorithms, we optimized parameters

through cross-validation sets by utilizing the GridSearchCV
function.

Performance assessment
Two benchmarking datasets (i.e. rigorous and non-rigorous parti-
tions) were used to evaluate the performance of all models. In par-
ticular, we trained and tested three models based on three train-
ing/test set partitions for each benchmarking dataset and calcu-
lated the average performance of three models as final perfor-
mance check. In particular, we employed 5-fold cross-validation
by using 80% as training data to optimize the parameters of the
models while the remaining 20% were test data to evaluate the
performance of different models. Two commonly used curves
were plotted to intuitively show the prediction performance of
models such as the receiver operating characteristic (ROC) curve
and precision-recall (PR) curve through the areas under the ROC
(AUROC) and PR curve (AUPRC) metrics. All ROC and PR curves
and metrics were determined through the R package ROCR. In
addition, we also introduced four common performance metrics
such as:

precision = TP
TP + FP

recall = TP
TP + FN

accuracy = TP + TN
TP + TN + FP + FN

F1 = 2 × precision × recall
precision + recall

where TP, FP, TN and FN represent the number of true positives,
false positives, true negatives and false negatives, respectively.

Enrichment analysis
To find functional and pathway enrichments of the identified
herpesviral targets, we downloaded GO annotation data of human
proteins from http://current.geneontology.org/ [38]. Moreover,
the KEGG pathway data were downloaded from https://www.
genome.jp/kegg/ [50]. Using all human proteins mapped to
Cellular Component, Biological Process and Molecular Function
ontologies as well as all human proteins in all KEGG pathways
as reference sets, GO terms and KEGG pathways were deemed
significantly enriched with human targets of each herpesvirus
subtype through hypergeometric tests, if the corresponding
Benjamin-Hochberg corrected P-values was ≤0.05.

RESULTS
Performance of Doc2vec encoding-based
LightGBM classifier
As the sequence-based Doc2vec embedding encoding technique
has a robust performance in PPI prediction, we used Doc2vec to
encode protein sequences and obtained corresponding sequence
feature as one of our multi-modal features. Furthermore, we
used such single-modal features to train the LightGBM classifier
with two benchmarking datasets (i.e. non-rigorous and rigorous
partitions) of human-herpesvirus PPIs. We utilized 5-fold cross-
validation to optimize parameters (i.e. extracted method, k-mers,
window size, epoch, and vector size) of the Doc2vec model by
comparing corresponding AUPRCs of the LightGBM models. As
the optimization baseline for extraction method, k, window size,
vector size, and epoch we chose 3, 5, 3, 32, and 70, respectively,
showing relatively superior performance in our previous work. To
optimize such parameters separately, we kept baseline values of
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Table 1: 5-fold cross-validation of LightGBM models using different k-mers of amino acids in the Doc2vec encoding scheme

Partition Metric k-mers

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

Non-
rigorous

AUROC 0.962 0.939 0.928 0.921 0.916 0.910 0.907
AUPRC 0.753 0.720 0.707 0.699 0.690 0.683 0.675

Rigorous AUROC 0.970 0.954 0.945 0.939 0.937 0.932 0.930
AUPRC 0.792 0.765 0.747 0.738 0.735 0.719 0.716

the remaining parameters constant. For instance, we tested k-
mer sizes 1 to 7 while keeping the unchanged baseline values of
other parameters. While ignored in previous studies, we found
that 1-mers (i.e. k-mer list: [‘M’, ‘P’, ‘Q’, ‘N’, ‘E’,’ Y’], sequence:
‘MPQNEY’) significantly improved the prediction performance of
our model (Table 1 and Figure 2), where AUROC/AUPRC values
were 2/3.4 and 9.8/9.1 percentage points higher compared to the
best performing k > 1-mers extraction methods. As a result, the
combination of Doc2vec with 1-mers, window size 3, vector size
256 and 70 epochs, and LightGBM (Doc2vec + LightGBM) provided
the best performance where the corresponding AUROC/AUPRC
values were 0.968/0.774 in the non-rigorous and 0.975/0.810 in
the rigorous data set using 5-fold cross-validation. In comparison,
Doc2vec + RF only achieved AUROC/AUPRC values of 0.973/0.796
(non-rigorous) and 0.924/0.497 (rigorous), respectively.

Performance of single-modal and multi-modal
based LightGBM classifiers
In addition to sequence-based single-modal features, we also
employed two other modals such as network and function
characterizations to train separate single-modal feature-based
LightGBM models and subsequently concatenated the feature
vectors of the three single-modals. To benchmark the perfor-
mance of three single-modal (i.e. sequence. network and function)
and multi-modal integration methods, we performed 5-fold
cross-validation with the non-rigorous and rigorous partition
benchmarking datasets. As the ratio of positive to negative
training sets is highly unbalanced (1:10), we mainly assessed
the corresponding performance of our models through analyses
of the AUPRC. Generally, we observed that the sequence-based
single-modal method outperformed network-based and function-
based single-modal models, while the multi-modal integration
LightGBM classifier generally outperformed single-modal based
models (Figure 3). In particular, we observed that the AUPRC
of multi-modal based LightGBM (Integration) was 3.5 and 2.2
percentage points higher compared to the second best performing
single-modal method (Doc2vec) (Figure 3), when we considered
the non-rigorous and rigorous datasets, respectively. Notably, the
sequence-based Doc2vec single-modal encoding scheme showed
a relatively modest decline of performance from non-rigorous
partition benchmarking to rigorous partition benchmarking
compared to the other two single modals capturing network and
function, implying that sequence information was still the most
informative feature.

Performance comparison with the baseline
methods
We further compared the performance of our proposed method
to several traditional feature encodings-based ML approaches,
such as RF where we represented the sequences of protein pair
samples through DPC, CT and AC feature encodings. Analyses

of AUPRCs and AUROCs suggested that our method generally
outperformed the routine feature encodings-based RF methods
when we considered both the non-rigorous and rigorous partition
datasets (Figure 4 and Supplementary Table S1). By introducing
more performance measurements in Supplementary Table S1, we
further quantified the performance of our method in comparison
to these traditional feature encodings-based ML models including
SVM and MLP, highlighting the substantially better AUROC and
AUPRC of our method.

Performance comparison with existing
human–virus PPI prediction methods
To further assess the predictive power of our proposed method,
we compared its performance to several existing state-of-the-
art human–virus PPI prediction methods based on three different
datasets, including a Word2vec encoding-based long-short term
memory (LSTM) model [22] and our previous transfer learning
method based on CNN [21]. To better present the prediction
accuracy and generalization ability of the models, we constructed
a novel benchmarking dataset that consisted of 9301 experimen-
tally determined human-herpesvirus PPIs before 2022 (a train-
ing set), 138 novel interactions verified in 2022 (an independent
test set) and corresponding negative samples (pos-to-neg 1:10).
Subsequently, we trained our model on the compiled training
set and assessed the corresponding performance using our test
set. Moreover, we employed the online webserver of LSTM-PHV
(http://kurata35.bio.kyutech.ac.jp/LSTM-PHV) to predict human-
herpesvirus interactions in the above independent test set. In
particular, we observed that our multi-modal integration method
outperformed single-modal based methods and LSTM-PHV utiliz-
ing various metrics (Table 2 and Supplementary Table S2), indi-
cating the effectiveness and robustness that the fusion of multi-
modal features provides. Furthermore, we compared our multi-
modal based LightGBM method to the baseline methods (CT + RF
and AC + RF) as well as our previous transfer learning method
TransPPI [21] by utilizing the human-herpesvirus PPI dataset of
TransPPI. Specifically, the dataset contains 5966 positive human-
herpesvirus PPI samples and 59 660 negative samples. Retraining
and assessing our multi-modal based LightGBM model through
5-fold cross-validation, we found an obvious improvement of
prediction performance with our new method, while our two
methods showed balanced precision and recall performance in
comparison to the baseline methods (Table 3 and Supplemen-
tary Table S3).

Cross-viral subtype prediction test
To further assess and compare the cross-viral subtype prediction
ability of our proposed method, we performed a cross-viral taxon-
omy prediction test based on the human-herpesvirus PPI dataset
of DeepViral that was a gene functional and disease phenotype
driven CNN method for human–virus PPI prediction [23]. We
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Figure 2. Performance of Doc2vec encoding-based LightGBM models in predicting human-herpesvirus PPIs based on different k-mers of amino acids.
Areas under the precision-recall curves (AUPRC) and the areas under the receiver operating characteristic curves (AUROC) indicated that 1-mers
effectively improved the performance of the LightGBM. (A) PR curves obtained with the non-rigorous partition benchmarking dataset and (B) the
rigorous partition benchmarking dataset. (C) ROC curves obtained with the non-rigorous partition benchmarking dataset and (D) the rigorous partition
benchmarking dataset.

Table 2: Performance comparison of our multi-modal based LightGBM model with the LSTM-PHV method using compiled
human-herpesvirus PPIs as a training set (determined PPIs before 2022) and a test set (determined PPIs in 2022)

Method AUROC AUPRC Precision Recall Accuracy F1-score

Our methoda 0.919 0.408 0.395 0.688 0.881 0.502
Our methodseq 0.884 0.298 0.289 0.427 0.858 0.345
Our methodnet 0.820 0.269 0.289 0.427 0.858 0.345
Our methodGO 0.854 0.348 0.336 0.531 0.867 0.412
LSTM-PHVb 0.829 0.387 0.298 0.708 0.829 0.419

aOur multi-modal (sequence+network+function) integration method. seqOur sequence-based single-modal method. netOur network-based single-modal
method. GOOur function-based single-modal method. bWe obtained the prediction results by using the online webserver of LSTM-PHV (http://kurata35.bio.
kyutech.ac.jp/LSTM-PHV). In particular, we chose 1097 successfully predicted protein pairs by LSTM-PHV to assess the performance of the LSTM-PHV and our
method. We determined our PPIs by utilizing a false positive rate cut-off of 0.1.

downloaded the dataset and source codes of DeepViral from the
online website (https://github.com/bio-ontology-research-group/
DeepViral). In particular, protein interactions that are involved in
the HHV-1/HHV-5 subtypes were divided into a validating positive

sample set (506 human-HHV-1 PPIs) and a test positive sample
set (1241 human-HHV-5 PPIs). Remaining interactions were used
as a positive training sample set (3194 PPIs between human
and other herpesvirus subtypes excluding HHV-1/HHV-5). As for

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/2/bbae005/7590318 by C

hina Agricultural U
niversity user on 28 January 2024

http://kurata35.bio.kyutech.ac.jp/LSTM-PHV
http://kurata35.bio.kyutech.ac.jp/LSTM-PHV
http://kurata35.bio.kyutech.ac.jp/LSTM-PHV
http://kurata35.bio.kyutech.ac.jp/LSTM-PHV
http://kurata35.bio.kyutech.ac.jp/LSTM-PHV
http://kurata35.bio.kyutech.ac.jp/LSTM-PHV
http://kurata35.bio.kyutech.ac.jp/LSTM-PHV
http://kurata35.bio.kyutech.ac.jp/LSTM-PHV
https://github.com/bio-ontology-research-group/DeepViral
https://github.com/bio-ontology-research-group/DeepViral
https://github.com/bio-ontology-research-group/DeepViral
https://github.com/bio-ontology-research-group/DeepViral
https://github.com/bio-ontology-research-group/DeepViral
https://github.com/bio-ontology-research-group/DeepViral
https://github.com/bio-ontology-research-group/DeepViral
https://github.com/bio-ontology-research-group/DeepViral


MultimodalPPI | 7

Figure 3. Performance of LightGBM models in predicting human-herpesvirus PPIs based on single-modal (i.e. sequence, network and function) and multi-
modal integration features. AUPRC indicated that the multi-modal integration-based LightGBM outperformed different single-modal based LightGBM
models. In (A), we used the non-rigorous partition benchmarking dataset, while in (B) we utilized the rigorous partition benchmarking dataset to evaluate
performance.

Table 3: Performance comparison of our multi-modal based LightGBM model with our previous transfer learning method TransPPI on
its human-herpesvirus PPI dataset

Method AUROC AUPRC Precision Recall Accuracy F1-scoreb

Our method 0.976 0.859 0.763 0.799 0.959 0.781
CT + RFa 0.932 0.737 0.858 0.481 0.946 0.617
AC + RFa 0.924 0.699 0.819 0.435 0.940 0.568
TransPPIa 0.942 0.768 0.771 0.681 0.953 0.723

aResults were retrieved from the original paper of TransPPI [21]. bWe used the prediction score threshold 0.5 to determine PPIs.

Table 4: Cross-viral subtype prediction performance comparison of our method with DeepViral by using DeepViral’s
human-herpesvirus PPI dataset

Method AUROC AUPRC Precision Recall Accuracy F1-scorec

Our methoda 0.986 0.896 0.834 0.805 0.968 0.819
Our methodseq 0.987 0.894 0.720 0.924 0.961 0.809
Our methodnet 0.919 0.554 0.512 0.641 0.912 0.569
Our methodGO 0.926 0.655 0.765 0.436 0.937 0.555
DeepViralb 0.922 0.513 0.292 0.917 0.790 0.443

aOur multi-modal (sequence+network+function) integration method. seqOur sequence-based single-modal method. netOur network-based single-modal
method. GOOur function-based single-modal method. bWe implemented DeepViral using the source codes and human-herpesvirus PPI dataset on Github
(https://github.com/bio-ontology-research-group/DeepViral). cWe used the prediction score threshold 0.5 to determine the values of precision, recall, accuracy
and F1-score.

negative sample selection, we randomly sampled and paired
human and herpesviral proteins from positive samples and the
human proteome to obtain the negative sample set that was
10 times as large as the positive sample set. Moreover, we also
extracted the prediction results of the same dataset (pos-to-neg
1:10) for DeepViral (Supplementary Table S4). We observed that
the performance of both our single-modal (sequence, network
and function) and multi-modal (sequence+network+function)
based methods was obviously better compared to the results we
obtained with DeepViral according to various metrics (Table 4),
implying that our prediction method had better cross-viral
subtype prediction ability. Furthermore, we observed that the
prediction results of our sequence-based method and DeepViral
showed high sensitivity (recall) and low precision, which may
be a consequence of the tendency of the models to predict a
large number of interactions. Such an observation also suggested
that the multi-modal feature fusion method can improve the
sensitivity of the model while keeping accuracy stable.

Prediction, network and functional analysis of
interactions between human and different
herpesvirus subtypes
To predict interactions between human host and nine herpesvirus
subtypes (i.e. HHV-1-HHV-5, HHV-6A, HHV-6B, HHV-7 and HHV-
8), we trained our three multi-modal based LightGBM models
with the non-rigorous datasets. For each herpesvirus subtype, the
human-herpesvirus protein pairs among the top 1000 predicted
scores of each model were first selected as candidates. Subse-
quently, we selected the protein pairs with overlapping predictions
of any two of the three models as the final high-confidence
prediction interactions. Therefore, we predicted 560, 387, 346,
662, 545, 415, 356, 353 and 625 PPIs between human host and
proteins of nine herpesvirus subtypes (HHV-1-HHV-5, HHV-6A,
HHV-6B, HHV-7 and HHV-8; Supplementary Table S5), respectively,
that contain 762 human proteins and 470 herpesvirus proteins
in total. By analyzing these targeted human host proteins, we
found a power-law distribution of the frequency of the number of

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/2/bbae005/7590318 by C

hina Agricultural U
niversity user on 28 January 2024

https://github.com/bio-ontology-research-group/DeepViral
https://github.com/bio-ontology-research-group/DeepViral
https://github.com/bio-ontology-research-group/DeepViral
https://github.com/bio-ontology-research-group/DeepViral
https://github.com/bio-ontology-research-group/DeepViral
https://github.com/bio-ontology-research-group/DeepViral
https://github.com/bio-ontology-research-group/DeepViral
https://github.com/bio-ontology-research-group/DeepViral
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae005#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae005#supplementary-data


8 | Yang et al.

Figure 4. Performance of our multi-modal based models and traditional feature encodings-based RF models in predicting human-herpesvirus PPIs.
AUPRC and the AUROC indicated that the multi-modal based LightGBM drastically outperformed DPC + RF, CT + RF and AC + RF. In (A), we trained and
tested on the non-rigorous dataset while in (B) we used the rigorous dataset. (C) ROC curves obtained with the non-rigorous partition dataset and (D)
the rigorous partition dataset.

human host genes being attacked, suggesting that a majority of
human proteins are targeted by one herpesviral protein, while a
minority interacts with many herpesviral proteins (Figure 5A).
Such an observation is in line with previous findings [51],
suggesting the reliability of our model for the identification of
novel interactions. To elucidate the similarities and differences
in the targeting host patterns of different herpesvirus subtypes,
we investigated the Jaccard similarity of targeted human host
proteins of different herpesvirus subtypes and performed
function and pathway enrichment of our predicted herpesviral
targets. Specifically, we found that HHV-1/HHV-4/HHV-5/HHV-
8 and HHV-2/HHV-3/HHV-6A/HHV-6B/HHV-7 clustered together,
respectively (Figure 5B). In particular, previous studies found
that HHV-7 differs from all known human herpes viruses, and
although its homology with HHV-6 is small, the two are most

closely related to each other [52], which is consistent with our
clustering.

Regarding functions/pathways, we observed several commonly
enriched functional and pathway terms such as protein stabi-
lization, viral entry into host cell, positive regulation of viral
life cycle, toxin transport and viral carcinogenesis, which were
shared terms by most of herpesvirus subtypes (Figure 5C and
Supplementary Tables S6 and S7). Moreover, we found several
related functions and pathways enriched with targeted genes
of multiple herpesvirus subtypes such as the interleukin-17
associated biological process that was simultaneously observed
in the targets of HHV-1 and HHV-2. Notably, HHV-1 and HHV-2 are
both herpes simplex viruses belonging to the Alphaherpesvirinae
family [7], indirectly confirming the reliability of our predictions.
Targets of HHV-2 and HHV-7 were enriched in camera-type eye
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Figure 5. Network topological and functional analysis of predicted viral targets of different herpesvirus subtypes. (A) Power laws appeared in the
frequency distribution of the number of human proteins that are targeted by a certain number of herpesviral proteins. (B) Jaccard indices between
targeted proteins of any two herpesvirus subtypes. (C) Common and unique enriched functional terms of targeted human proteins of different
herpesvirus subtypes (predicted human-herpesvirus PPIs and corresponding confidence scores are available in Table S5).

associated biological processes while HHV-2 was found associated
with keratitis and conjunctivitis, suggesting that HHV-7 infection
may also be associated with eye disease. Furthermore, cardiac
muscle related pathways were observed in target enrichments of
HHV-1, HHV-3 and HHV-4. In particular, we also found several

unique function and pathway enrichments of different her-
pesvirus subtypes, such as fungiform papilla formation (HHV-1),
radial glial cell differentiation (HHV-2), blood coagulation (HHV-
3), cellular response to heat (HHV-4), oxygen transport/high-
density lipoprotein particle assembly (HHV-5) and pulmonary
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Figure 6. Visualization of single-modal and multi-modal features of six experimentally validated interactions learned from embedding models. (A)
Sequence features. (B) Network features. (C) Functional features. (D) Multi-modal fusion features.

valve development/heme biosynthetic process (HHV-6A), which
provides clues to the specific infection mechanism of different
herpesvirus subtypes for further mechanism analysis.

Predicted and experimentally confirmed
interactions
Conducting a literature search to further assess the reliability
of our prediction method, we found experimental corrobora-
tion of six predicted human-herpesvirus interactions. Specifically,
Dheekollu et al. performed FLAG-affinity purification and LC-
MS/MS analysis of FLAG-EBNA1 associated proteins, indicating
that EBV protein EBNA1 interacts with the PLOD family of pro-
teins (PLOD1, PLOD2 and PLOD3) [53]. Bogdanow et al. employed
crosslinking mass spectrometry and quantitative proteomics to
derive spatially resolved human-CMV and CMV-CMV interactions
[54]. Furthermore, we predicted two out of three host–CMV inter-
actions of the CMV protein UL47 (i.e. BICD2-UL47, PPIA-UL47 and

YWHAZ-UL47) that were experimentally determined. Interest-
ingly, four PPIs (i.e. PLOD1-EBNA1, PLOD2-EBNA1, PPIA-UL47 and
YWHAZ-UL47) were identified by our method under the false
positive control rate of 1% (Supplementary Table S8), indicating
the reliability of our predictions to some extent.

To further explore the biological significance of our proposed
model, we also investigated feature importance and visualized the
single-modal and multi-modal features of these six experimen-
tally validated cases (Figure 6). Specifically, we performed t-SNE
by feeding our sequence network, functional and merged features
of the six experimentally validated interactions and randomly
sampled 60 negative samples (not in the training set), respectively.
In general, we found relatively large spatial distances between
the six interactions and negative samples in the t-SNE plot of
‘Integration’, suggesting that multi-modal fusion features played
important roles in distinguishing these interactions from negative
samples (Figure 6). Such observations indicated the effectiveness
and advantages of our multi-modal model.
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DISCUSSION AND CONCLUSION
Identification of human-herpesvirus PPIs is critical for our under-
standing of the pathogenic mechanisms of herpes viral infections.
While AI/ML-driven prediction of host–virus PPIs has continu-
ously been a hot topic in the field of computational biology,
traditional feature encodings-based ML models are susceptible to
bias in the training and testing dataset. Specifically, the perfor-
mance of these models is often overestimated by using data sets
that are not rigorously divided (e.g. there are certain shared or
similar protein components between the training and test sets).
Therefore, the ability of the model to predict new interactions and
cross-herpesviral subtypes cannot be fully evaluated using only
traditional data sets. In this work, we constructed both datasets
of randomly non-rigorous and rigorous samplings, that allowed
us to comprehensively assess the host–virus prediction ability of
models for known and unknown viral proteins. In particular, the
latter rigorous samplings followed the strategy that herpesvirus
proteins of both negative and positive test sets were allowed to be
sequence-similar to herpesvirus proteins of negative training sets
but were obligate to be sequence dissimilar to any herpesvirus
proteins in the positive training sets. Such rigorous dataset par-
tition can provide more meaningful results for models to deal
with novel herpesvirus proteins and to perform cross-herpesviral
subtype predictions.

By using non-rigorous and rigorous benchmarking datasets,
we introduced a multi-modal (sequence, network and function)
based LightGBM method to predict human-herpesvirus PPIs. With
the development of NLP-driven embedding techniques, multi-
modal protein features can be effectively obtained, providing
more robust information to predict PPIs. We first transformed
protein sequences, intra-species PPI network graphs and GO-
protein comprehensive network graphs to fixed-dimensional
multi-modal feature vectors by utilizing document embedding
and graph embedding methods. Subsequently, we trained the
single-modal and multi-modal integration models by using a
robust ML algorithm, LightGBM. In particular, we employed a
novel k-mer extraction method that significantly improved the
performance of the sequence-based single-modal model (Table 1
and Figure 2), effectively capturing the semantic features of each
amino acid and the whole sequence. Besides, graph embeddings
represented network and functional properties of human and her-
pesviral proteins. In particular, the multi-modal model provided
more balanced precision and recall compared to single-modals. In
comparison with several traditional feature encodings-based ML
methods, our method has exhibited strong robustness and highly
balanced precision/recall rates, considering our challenging
training and testing datasets. We further compared our method
to three existing state-of-the-art human–virus PPI prediction
methods and performed a cross-viral prediction test based on
their datasets and a newly compiled dataset. The results of our
method showed more advantageous and robust performance
for both cross-herpesviral subtype prediction and prediction
based on the new dataset. Such two datasets were also relatively
rigorous with different distribution of training sets and test
sets, which provided valuable assessments. Finally, we predicted
interactions between human host and different herpesvirus
subtypes based on our models. Network and functional analysis
of our predicted targets of various herpesvirus subtypes indicated
the reliability of our prediction and provided common, related
and unique enriched functions/pathways of targets of different
herpesvirus subtypes.

Although ML-based human–virus PPI prediction methods have
been intensively developed in recent years, they still suffer from

several difficulties and limitations. Specifically, the generalization
ability of existing methods is still insufficient, which is reflected
by sharply dropping accuracy rates when interactions of unseen
proteins in the training set were predicted. Furthermore, the
selection of negative samples remains a challenging issue, which
potentially affects both the prediction accuracy and the general-
ization ability of the predictive models. In general, new features of
proteins can improve the performance of predictive models. For
example, the advent of AlphaFold2 [55] allows a reliable predic-
tion of protein structures that can be integrated into models to
predict potential interactions between human and viral proteins.
Specifically, such protein structures can be easily converted into
residue-level structural graph features to be utilized in down-
stream prediction models. Moreover, large protein language mod-
els such as ESM and ProGen have been applied in various protein
bioinformatics prediction tasks [56–58]. Such language models are
generally generated from very deep neural networks with billions
of parameters based on the transformer architectures and trained
on millions of protein sequences. These models are powerful in
learning protein sequence patterns across evolution, implying
that they can be tapped to improve the prediction of human–
virus PPIs.

Key Points

• A novel k-mer extraction method (i.e. k = 1) of the doc-
ument embedding encoding significantly improves the
model performance for human-herpesvirus PPI predic-
tion.

• By introducing multi-modal (i.e. sequence, network and
function) embedding feature encodings, we propose a
LightGBM model for human-herpesvirus PPI prediction.

• Our method shows superior performance compared
to other computational frameworks as well as several
existing human–virus PPI prediction methods by utiliz-
ing various benchmarking datasets including a cross-
viral subtype dataset.
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