
RESEARCH ARTICLE

Prediction and analysis of human-herpes
simplex virus type 1 protein-protein
interactions by integrating multiple methods

Xianyi Lian1, Xiaodi Yang1, Jiqi Shao2, Fujun Hou3, Shiping Yang4,*, Dongli Pan3, Ziding Zhang1,*

1 State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193,
China

2 National Demonstration Center for Experimental Biological Sciences Education, College of Biological Sciences, China
Agricultural University, Beijing 100193, China

3 Department of Medical Microbiology and Parasitology, and Department of Infectious Diseases of Sir Run Run Shaw Hospital,
Zhejiang University School of Medicine, Hangzhou 310058, China

4 State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University,
Beijing 100193, China

* Correspondence: zidingzhang@cau.edu.cn, shi_ping_yang@163.com

Received May 2, 2020; Revised July 3, 2020; Accepted July 27, 2020

Background: Herpes simplex virus type 1 (HSV-1) is a ubiquitous infectious pathogen that widely affects human
health. To decipher the complicated human-HSV-1 interactions, a comprehensive protein-protein interaction (PPI)
network between human and HSV-1 is highly demanded.
Methods: To complement the experimental identification of human-HSV-1 PPIs, an integrative strategy to predict
proteome-wide PPIs between human and HSV-1 was developed. For each human-HSV-1 protein pair, four popular
PPI inference methods, including interolog mapping, the domain-domain interaction-based method, the domain-
motif interaction-based method, and the machine learning-based method, were optimally implemented to generate
four interaction probability scores, which were further integrated into a final probability score.
Results: As a result, a comprehensive high-confidence PPI network between human and HSV-1 was established,
covering 10,432 interactions between 4,546 human proteins and 72 HSV-1 proteins. Functional and network analyses
of the HSV-1 targeting proteins in the context of human interactome can recapitulate the known knowledge regarding
the HSV-1 replication cycle, supporting the overall reliability of the predicted PPI network. Considering that HSV-1
infections are implicated in encephalitis and neurodegenerative diseases, we focused on exploring the biological
significance of the brain-specific human-HSV-1 PPIs. In particular, the predicted interactions between HSV-1
proteins and Alzheimer’s-disease-related proteins were intensively investigated.
Conclusion: The current work can provide testable hypotheses to assist in the mechanistic understanding of the
human-HSV-1 relationship and the anti-HSV-1 pharmaceutical target discovery. To make the predicted PPI network
and the datasets freely accessible to the scientific community, a user-friendly database browser was released at http://
www.zzdlab.com/HintHSV/index.php.

Keywords: human-virus interaction; protein-protein interaction; prediction; herpes simplex virus type 1; Alzheimer’s
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Author summary: HSV-1 infects a large proportion of the global population with the ability to cause both fatal diseases
and disturbing recurrent infections. However, the pathogenic mechanisms of HSV-1 infections and human immune responses
have not been fully clarified. To decipher the complicated human-HSV-1 interactions, a comprehensive PPI network between
human and HSV-1 is highly demanded. Here an integrative bioinformatics prediction method was employed to provide a
relatively complete and reliable human-HSV-1 interactome. We hope our predictions can provide testable hypotheses to
accelerate drug development for the treatment of diseases associated with HSV-1 infections.
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INTRODUCTION

Herpes simplex virus type 1 (HSV-1) is a neurotropic,
enveloped, and double-stranded linear DNA virus [1–4].
The genome of HSV-1 is roughly 152 kb, encoding more
than 74 different genes [3]. As a widespread infectious
virus, it can be transmitted from person to person through
direct contact. Around 3.7 billion people under the age of
50 are estimated by the World Health Organization to be
infected with HSV-1 worldwide [5]. Once entering the
human body from the skin or mucosa, HSV-1 can enter
sensory neurons and be transported through axons to the
trigeminal ganglion where a latent infection is established.
When stimulated, the latent virus can be reactivated to

cause symptomatic or asymptomatic recurrent infections,
leading to common cold sores, blisters, and various
serious diseases [2–4,6]. HSV-1 can also reach the central
nervous system (CNS), occasionally leading to fatal
neurological diseases, such as the herpes simplex
encephalitis (HSE) [7,8]. Moreover, an increasing
evidence points to a strong association between HSV-1
infection and the Alzheimer's disease (AD) [9]. There is
no existing antiviral drug known that would eliminate an
HSV-1 infection as the virus can undergo latent infection
and thereby evade drug interactions. Therefore, more
fundamental research efforts are required to decipher the
complicated human-HSV-1 interactions to provide hints
for developing novel prophylactic or therapeutic methods
against viral infections.
Investigations on protein-protein interactions (PPIs)

between the host and the pathogen can reveal key
biological processes concerning the interaction as well
as elucidate the underlying mechanisms of infectious
diseases and thereby support the development of novel
therapeutic strategies. As an important branch of host-
pathogen PPI studies, human-virus PPI has always been a
focus given the close relationship with human diseases.
Current research efforts may focus on individual viral
proteins at a time, such as glycoproteins involved in the
HSV-1 entry into the host cell [10], ICP34.5 (neuroviru-
lence factor) [11], ICP0 (viral E3 ubiquitin ligase) [12],
ICP8 (single-stranded DNA-binding protein) [13], ICP4
(major viral transcription factor) [14] and so on. There-
fore, it is still essential to decipher the interactome
between human and HSV-1 proteins from a global
perspective. Additional available data would enable a
more robust PPI network to be built between human and
HSV-1, which would make our understanding more
comprehensive. In general, the experimental identifica-
tion of PPIs, including the human-virus PPIs, is time-
consuming, labor-intensive, and expensive. In this
context, cost-effective computational prediction methods
play an increasingly important role in supplementing the
experimental identification of PPIs.

A plethora of host-pathogen PPI prediction methods
including human-virus PPI were previously developed
[15–18], mainly originating from intra-species PPI
prediction methods [19–21]. In principle, traditional
intra-species PPI prediction methods, such as the
interolog mapping (IM) [22], the domain-domain inter-
action (DDI)-based method [22,23], and the domain-
motif interaction (DMI)-based method [24], can be
readily adapted to the prediction of human-virus PPIs.
The IM can be used indirectly as a remedy for data
scarcity by homolog knowledge transfer based on the
assumption that the interacting protein pairs in one
species are likely to be conserved in their cousins [25].
Interacting domain pairs are considered as the building
blocks of PPI networks. Itzhaki’s research [26] showed
that interacting domain pairs potentially mediate human-
herpesvirus interactions. The DMI-based method is
slowly being revealed to be useful, given the extensive
mimicry of host protein short linear motifs by viruses
[27,28]. With the accumulation of experimentally verified
human-virus PPI data, machine learning (ML)-based
prediction methods were increasingly popular in the past
decade, which made them worthy to be applied to the
prediction of human-HSV-1 PPIs. Although none of the
existing human-virus PPI prediction methods can achieve
satisfactory performance, it is common knowledge that
more powerful and robust predictive performance can be
achieved by the integration of multiple prediction
methods, which was implemented in a series of studies
[21,29,30].
In this work, four PPI inference methods (i.e., the IM,

DDI, DMI, and ML-based method) were integrated for
high-confidence PPI prediction between human and HSV-1
across the entire proteome. In addition to the ML-based
method that can output predicted scores, the other three
traditional PPI prediction methods were also refined, so
that each prediction method could yield an interaction
probability score for any query protein pair. The four
predictive scores for the query protein pair were further
integrated into a final score. PPIs with higher final scores
(integration score> 0.5) were singled out for further
analysis. In addition to the general functional and network
topology analyses of HSV-1 targeting human proteins, the
biological significance of the predicted human-HSV-1
interactome was further explored with a focus on brain
tissue-specific PPIs. In particular, the potential mechan-
isms of the HSE and AD in the context of the human-
HSV-1 interactome were investigated.

RESULTS AND DISCUSSION

The landscape of predicted human-HSV-1 PPIs

In this work, an integrative computational framework was
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applied to predict the interactions between 74 different
proteins of HSV-1 strain KOS as well as 20,412 reviewed
human proteins. Four methods (IM, DDI, DMI, and ML)
were used in our computational framework to predict
whether two proteins interact (Fig. 1). Briefly, IM is based
on the experimentally validated interactions of multiple
homologous protein pairs (i.e., interologs) of the query
human-HSV-1 protein pair; DDI/DMI relies on the
detection of the known or possible domain-domain/
motif interactions in the query protein pair to infer the
interaction probability; ML is trained from the known
PPIs between human and HSV-1, the feature encoding
schemes of which include the sequence features extracted
from protein pairs and the network properties of human
proteins in the corresponding human PPI network.
Finally, the four interaction probability scores (PrIM,
PrDDI, PrDMI, and PrML) were combined into an integra-
tion score (Pr) representing the interaction probability of
the human-HSV-1 protein pair. It is hard to precisely rank
the performance of the four individual methods due to
data limitation and bias of known human-HSV-1 PPIs.
Thus, each method in the final integration was treated
independently and assigned with the same weight. More
methodological details are available in “Materials and
methods”.
The number of PPIs predicted by each method was

calculated separately. As shown in Fig. 2A, the number of
PPIs predicted by the DMI was the largest (41,828),
followed by the DDI (13,579), the IM (7,805), and the
ML (6,341). In general, the percentages of overlapping
PPIs among different methods are low, implying that
different methods are distinctive and complementary. Due
to similarity in the methodologies, the DDI achieved
relatively more consistent PPI prediction results com-
pared to the IM and the DMI (the overlap rate in both
cases accounted for about 10% of its total). After
integrating the results of the four methods, the number
of predicted PPIs with Pr> 0 was 65,673. Although a
higher Pr should correspond to a higher reliability, it is
still necessary to set a reasonable and convincing
threshold for high-confidence predictions. The solution
was sought from high-throughput human-virus PPI
identification studies. Taking the number of experimen-
tally validated human-HIV-1 PPIs as a reference,
100 – 200 interactions with human proteins were identi-
fied for each HIV-1 protein in some high-throughput
experimental studies [31]. Supplementary Fig. S1 showed
the number of PPIs obtained under different confidence
cutoffs. In general, a low threshold will result in too many
predictions, which inevitably contain false positives. On
the contrary, a high threshold will yield too few
predictions, and many potential interactions will be

Figure 1. Workflow for the prediction of human-HSV-1 PPIs. The interaction probability for each human-HSV-1 protein pair by
interolog mapping (IM), domain-domain interaction (DDI), domain-motif interaction (DMI), or machine learning (ML)-based methods

was evaluated. The four interaction probability scores (PrIM, PrDDI, PrDMI, and PrML) subsequently formed the final probability score
(Pr).
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ignored. Thus, the threshold of PPI predictions was
empirically set to Pr> 0.5 and 10,432 PPIs were singled
out as the most likely interacting protein pairs (Supple-
mentary Fig. S1). On average, each viral protein interacts
with 141 human proteins, which is a relatively reasonable
number range in comparison to high-throughput PPI
experimental identifications between human and HIV-1.
Moreover, we found that 690 of 728 experimentally
verified PPIs (collected from the HPIDB database and
used in the ML method) overlaps with our 10,432
predicted results (Supplementary Data Set S1), 601 of
which PPIs could be predicted by more than one method.
Figure 2B showed that the IM method accounted for the
largest proportion among these 10,432 high-confidence
PPIs.

Functional and network analyses showing the
reliability of predicted human-HSV-1 PPIs

The 10,432 high-confidence PPIs were further analyzed.
First, the number of human proteins targeted by each
HSV-1 protein was counted (Fig. 3). On average, one
HSV-1 protein interacted with 145 human proteins and
the top ten HSV-1 proteins contributed to 5,963
interactions (approximately 57%) in the predicted
human-HSV-1 interactome. The HSV-1 protein UL22
was predicted to have the most interactions with human
proteins, and the predicted interaction partners were
significantly enriched in the category of membrane-
bounded organelle components (hypergeometric test,
corrected p-value = 3.37�10–51). Previous studies sug-
gested that UL22, also called as the envelope glycoprotein
H (gH), complexed with glycoprotein L (gL, UL1) and
interacted with glycoproteins B (gB, UL27) and D (gD,
US6) to form a viral membrane fusion machine, thereby
driving the fusion of the virus with the host membranes to
allow the enter or spread of the virus between the host
cells [32]. It is, therefore, reasonable to predict that this

viral protein interacts with multiple human proteins
especially membrane proteins. RL2, E3 ubiquitin ligase
(ICP0), was predicted to interact with several human
proteins that belong to the host cellular interferon-related
proteins category (hypergeometric test, corrected p-value
= 1.32�10–9), which may indicate that the RL2 is a
weapon of the HSV-1 to counteract the intrinsic- and
interferon-based antiviral responses. Thus, the predicted
viral targets play an important role in the viral infection
process, indicating the reliability of our human-virus PPI
prediction.
Viral proteins tend to target some important host

(human) proteins, such as the “hub” (high-degree
centrality) and “bottleneck” (high-betweenness centrality)
nodes of the human PPI network, to hijack and utilize host
cells for viral life cycles [33]. Therefore, the degree and
betweenness centrality of target proteins (proteins in the
human PPI network that are targeted by the HSV-1) and
non-target proteins (proteins in the human PPI network
that are not targeted by HSV-1) from the perspective of
network biology were also calculated. It can be seen from
Fig. 4 that, whether in degree or betweenness centrality,
the values of target proteins were significantly higher than
those of the non-target proteins (Wilcoxon rank-sum test,
p-value< 2.2�10–16), which is in accordance with
previous observations inferred from human-pathogen
PPI network analyses [34].

Functional analysis of brain-specific human-HSV-1
PPIs

Among several diseases caused by HSV-1 infection,
sporadic but often fatal HSE in the brain is of great
concern. Therefore, additional focus was placed on PPIs
in which the human proteins are specifically expressed in
the brain tissue. 569 PPIs containing 283 brain-specific
human proteins from the 10,432 high-confidence PPIs
were selected. According to the Gene Ontology (GO)

Figure 2. Overlaps of the predicted PPIs among the four individual methods. (A) All the predictions (Pr > 0). (B) High-
confidence predictions (Pr > 0.5).
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enrichment analysis (Fig. 5), cell adhesion-related
biological process (BP) terms, such as “cell adhesion”,
“biological adhesion” and “cell-cell adhesion”, were
found to be significantly enriched (Fig. 5A, corrected p-
value = 2.33�10–7, 2.33�10–7 and 2.2�10–14, respec-
tively), which indicated the reliance of HSV-1 on the
intricate events of attachment and fusion to enter cells,
especially by utilizing its envelope proteins (envelope
glycoproteins) to interact with cell adhesion molecules to
mediate this process [35]. In our results, 55 cellular
adhesion molecules were predicted to interact with HSV-1
proteins. In the cellular component (CC) category, human
proteins were found to be significantly enriched in
microtubule or microtubule cytoskeleton (Fig. 5B,

corrected p-value = 1.14�10–4 and 4.82�10–4, respec-
tively). Microtubules are major components of the
cytoskeleton and are known to be involved in transport
in all eukaryotic cells. Therefore, the above enriched GO
terms are in accordance with previous knowledge about
the transportation of viral capsids to and from the nucleus
to complete the replication cycle after entering the host
cell. This is particularly relevant to the processes
associated with the establishment of latent infection and
reactivation in neurons, during which the transport of
capsids along microtubules in long axons is required.
Besides, one strategy usurped by the HSV-1 is to guide

the entry pathway by the manipulation of various cell
signaling cascades [36]. In the GO enrichment analysis

Figure 3. The number of human proteins predicted to interact with HSV-1 proteins.

Figure 4. Degree and betweenness centrality of human target proteins and non-target proteins. ***, stands for statistically
significant results (Wilcoxon test, p-value< 2.2�10–16).
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results of molecular function (MF) entries (Supplemen-
tary Fig. S2), the GO term of “calcium ion binding” was
found to be significantly enriched. Ca2+ is one of the most
prominent and common signal carriers and is known to
modulate several steps during virus replication. The entry of
HSV-1 is triggered by the interaction of the gH protein with
cellular integrin, which eventually triggers Ca2+-mediated
signaling pathways within the cell to ensure effective
nucleocapsid translocation into the cytoplasm [36].
Although the relationship between chloride channels
and viral infections has so far received less attention,
previous studies showed that chloride channels play an
important role in the HSV-1 entry [37]. Here, the CC
enrichment of the chloride channel complex and the
MF enrichment of the chloride channel activity were
also found to be significant, further supporting the
association between the chloride channel and the HSV-1
entry.
Collectively, the GO enrichment results of the HSV-1-

interacting human brain-specific proteins were consistent
with known functions associated with the HSV-1
replication cycle, suggesting that the PPIs between
HSV-1 and human disrupt the normal function of proteins
in the brain cells, which may cause inflammation and
damage leading to HSE. These data also support the
overall reliability of the predicted PPIs. A vital subnet-
work (Supplementary Fig. S3) of the human-HSV-1
interactome is expected to be formed by the 569 PPIs,
which may enhance the mechanism-wise understanding
of diseases related to HSV-1 infection (e.g., HSE) as well
as providing new hints to the discovery of novel
therapeutic targets.

The association of the HSV-1 with the AD in the
context of human-HSV-1 PPIs

Increasing evidence points to the association of HSV-1
brain infection with AD. HSV-1 is present in the latent

Figure 5. Enriched GO terms of the brain-specific human proteins predicted to interact with HSV-1 proteins in the
biological processes (A) and cellular component (B) categories.
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state in a high proportion of elderly brains. Intermittent
reactivation from the latent state may cause local damage
and inflammation, accumulation of which might even-
tually lead to AD [7].
To investigate whether the prediction results could

provide supportive evidence for the association between
the AD and HSV-1 infection, 1,947 AD-related human
genes were compared with the 4,546 predicted HSV-1
target proteins (human proteins present in the 10,432
predicted PPIs), and 635 were found to be overlapping

(Fig. 6A, hypergeometric test, p-value = 1.37�10–12).
Meanwhile, the overlap between AD-related genes and
target proteins specifically expressed in brain tissue was
calculated and found to be still significant (hypergeo-
metric test, p-value = 4.18�10–10). The average network
distance of AD-related genes to target proteins and non-
target proteins in the human PPI network was also
calculated with results showing that AD-related genes
were closer to target proteins (Fig. 6B). The above
network analyses may suggest the strong association of

Figure 6. Association between human-HSV-1 PPIs and the AD. (A) Overlaps between human targets and AD-related genes.
(B) Differences in network distance between target proteins and non-target proteins to AD-related genes in the human PPI network.
*** denotes statistical significance (Wilcoxon test, p-value <2.2�10–16). The mean value is represented by the small diamond box.

(C) The possible relationship between APP, Aβ, and HSV-1. ① Interaction of HSV-1 proteins (UL2, UL21, and UL45) with the APP.
② APP phosphorylation and increased BACE1 activity induced by the HSV-1 infection, resulting in the conversion of APP to Aβ.
③ Aβ inhibits viral activity by encapsulating viral proteins.④ HSV-1 proteins (RL1 and UL45) interact with Beclin-1, suppressing the
degradation of Aβ via the inhibition of its autophagy-lysosome pathway. ⑤ To sum up, the deposition of Aβ is led by the imbalance

between the Aβ production and degradation.
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many HSV-1 target proteins with the AD, and it can be
hypothesized that the virus may also indirectly affect
these AD-related genes by interacting with other proteins
to enhance their ability to influence the AD risk and
predisposition.
The amyloid precursor protein (APP) is a single-pass

transmembrane protein that is widely expressed in tissues,
especially at high levels in the brain neurons, and is
subsequently metabolized rapidly [38]. Two pathways are
known for the proteolysis of the APP (Fig. 6C), one of
which includes its cleavage by α-secretase, generating the
sAPPα fragment, and the other includes its cleavage by β-
secretase (BACE1), producing neurotoxic amyloid β (Aβ)
[38]. One of the commonly recognized hallmarks of the
AD is the accumulation of the Aβ. First, HSV-1 uses its
capsid proteins to physically interact with the APP,
thereby hijacking the APP to transport newly generated
virions in infected cells through a rapid anterograde
transport mechanism [2]. Although such behavior
changes the intracellular distribution of the APP and
seems to prevent it from its conversion to Aβ partially,
HSV-1 infection triggers an intra-CNS anti-microbial
innate immune response to induce APP phosphorylation
and activates the BACE1 activity, which jointly promotes
the production of Aβ [39]. The Aβ would encapsulate the
HSV-1 virions to facilitate their clearance by autophagy
[40,41]. HSV-1 also employs virulence factors to counter-
attack, inhibiting the autophagy-lysosome pathway of Aβ
through interaction with the Beclin-1 [11]. The imbalance
between the production and elimination of the Aβ caused
by the HSV-1 infection accounts for excessive intracel-
lular neurotoxic Aβ deposition within autophagosomes
and endosomes, thus inducing neuronal apoptosis, which
in turn can drive the degeneration of CNS tissue and the
development of AD. Our predicted PPIs showed that three
HSV-1 proteins (UL2, UL21, and UL45) interacted with
the APP, two of which were in line with the experimental
observation. Besides, the RL1 and UL45 were also
predicted to play a virulence factor role in the interaction
with the Beclin-1. In summary, the recapitulated interac-
tions between the HSV-1, APP, and Aβ further argue for a
mechanistic basis for the association between the HSV-1
infection and the risk of the AD (Fig. 6C).

Interactive web interface

The predicted 10,432 high-confidence PPIs were stored in
a database to which an interactive web interface was
provided (http://www.zzdlab.com/HintHSV/index.php)
to facilitate user access. We have provided a search box
for 72 HSV-1 proteins participating in these 10,432 PPIs,
so any protein can be selected to view the corresponding
interactions. For each HSV-1 protein, a table is provided
to display all the prediction scores for each human target

protein (including four individual prediction scores and
one integrative score) and a subnetwork to show the PPIs,
which are available for download. Human proteins can
also be searched by the users to find possible PPIs with
HSV-1. The 569 brain-specific PPIs, 690 known PPIs, and
other datasets used in this work are also downloadable in
the web interface.

Limitations of our work

The current work is inevitably subjected to the following
limitations since the number of experimentally known
human-HSV-1 PPIs is not sufficient. Firstly, some
parameter settings were empirically selected since
sufficient data for strict parameter optimization was not
available. Secondly, the integration of different PPI
inference methods was also hindered by the lack of data
availability. In case of sufficient amount of known PPI
data, some more powerful integration methods, such as
the logistic regression can be tested. Thirdly, the
reliability of the prediction results could not be directly
assessed either. Even so, the prediction results are
believed to become an important data resource, after the
careful implementation of state-of-the-art PPI inference
methods to provide useful PPI candidates for further
experimental validation. Moreover, the new human-HSV-1
PPIs identified by experimental scientists in the future
will continuously answer the overall reliability of the
current predictions.

CONCLUSION

In this work, four popular PPI inference methods were
used to predict the PPIs between human and HSV-1. To
maximize the reliability of predictions, the interaction
probability scores from the four methods were integrated
into a final probability score and a stringent threshold
(Pr> 0.5) was selected to single out high-confidence
PPIs. The subsequent functional and network topology
analyses also proved an overall reasonable reliability in
methodology for the prediction strategy. To investigate
the associations between the HSV-1 infection and
neurodegenerative diseases (e.g., the HSE and the AD),
the focus was placed on brain-specific PPIs between
human and HSV-1, and a subnetwork containing 569
inter-species PPIs was established. Functional analysis
shows that human proteins involved in the entry,
intracellular transport pathways, and various regulatory
pathways, are utilized or hijacked by the HSV-1 through
complicated inter-species PPIs. Collectively, the estab-
lished human-HSV-1 PPI network provides a global
landscape regarding the human-HSV-1 interactome, as
well as new insights into the pathogenesis of the HSV-1
infection.
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MATERIALS AND METHODS

Data sets

HSV-1 and human proteins

In this work, the focus was placed on the PPI prediction
between the HSV-1 strain KOS and human. All the
proteins of the HSV-1 strain KOS were downloaded from
GenBank (https://www.ncbi.nlm.nih.gov/nuccore/
952947517/). By merging two redundant proteins (Pro-
tein RL2 repeats with protein RL2_1; Protein RS1 repeats
with protein RS1_1; the results are presented as RL2/
RL2_1 and RS1/RS1_1, respectively), 74 HSV-1 proteins
were obtained (Supplementary Data Set S2). 20,412
reviewed human proteins used for prediction were
downloaded from the UniProt database [42] (Supplemen-
tary Data Set S3).

Brain-specific human genes

Brain-specific genes revealing elevated expression in the
cerebral cortex were downloaded from the Human Protein
Atlas (www.proteinatlas.org). By UniProt ID mapping,
1,442 brain-specific human proteins were obtained.

AD-related human genes

Gene-disease associations were downloaded from Dis-
GeNET (http://www.disgenet.org/). The resulting 1,947
AD-related human genes were obtained by the UniProt ID
mapping tool.

Human PPI network

The human interaction network was collected in our
previous work [43], consisting of 345,064 PPIs and
18,473 proteins. It was used for network parameter
analyses and network-based encoding in the development
of the ML-based predictive model. The R package called
the igraph [44] was used to calculate the network
parameters of protein nodes in the network.

PPI prediction methods

To ensure that the predictions are robust and reliable, four
prediction methods were used to infer the PPIs between
74 HSV-1 proteins and 20,412 human proteins. The four
methods gave the probability scores (0 – 1) of the
interaction for 74 � 20,412 protein pairs. Finally, the
four scores were combined into one final score (Prfinal)

according to the integration method used in the STRING
database [30]. It was calculated in a naïve Bayesian
manner under the assumption of the independence of
various methods. The formulas to infer Prfinal are as
follows:

Pri=
Pri – p

1 – p
, i=IM,DDI, DMI,ML, (1)

Prtotal=1 – ð1 – PrIMÞ � ð1 – PrDDIÞ � ð1 – PrDMIÞ

�ð1 – PrMLÞ, (2)

Prfinal=Prtotal þ p � ð1 – PrtotalÞ: (3)

Here p denotes a prior factor, which is set as 0.041
following the setting provided by STRING. PrIM, PrDDI,
PrDMI, and PrML stand for the interaction probability score
for the IM, DDI, DMI, and ML method, respectively.
Each method is briefly described in the following
subsections.

The IM method

The IM method is a widely used PPI inference method.
The core idea of IM is to infer unknown PPIs from known
homologous PPIs (termed as interologs) in other organ-
isms. Previous IM applications often used the PPI
templates from one or several model species to infer
unknown PPIs. To maximize the IM method, we extended
the species source range of template PPIs to cover most of
the experimentally identified PPIs, including both of
intra-species and inter-species PPIs. Here, 571,359
template PPIs with relatively complete information were
collected from seven public databases, including Bio-
GRID [45], DIP [46], HPIDB [47], IntAct [48], PATRIC
[49], InnateDB [50] and VirHostNet [51]. We employed
the strategy of HIPPIE [52] to evaluate the quality of each
PPI template. For each PPI template, a quality score
(Stemp) ranging from 0 to 1 was assigned by accounting
for three conditions (i.e., the experimental methods for the
PPI determination, the literature reporting the PPI, and the
species included in the PPI). The six parameter values in
the formula are as set in HIPPIE. To identify the
interologs for a query protein pair between human and
HSV-1, BLAST searching was conducted to identify their
homologs, and the criteria for two proteins to be
considered homologous are as follows: E-value£10–5,
sequence identity≥30%, and alignment coverage of
query protein≥40%. In case n homologous pairs were
identified for the query pair, the IM-based interaction
probability (PrIM) can be defined as:
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PrIM=1 –∏
n

i=1
ð1 – siÞ,

si=
0, if protein pair i not in PPI templates

Stemp, if protein pair i in PPI templates
:

(
(4)

The DDI-based method

Considering that the interaction between two proteins
may be mediated through evolutionally-conserved, inter-
acting domain pairs existing in the proteins, the DDI
method was developed for PPI prediction. The list of
known DDIs can be downloaded from the 3did database
[53]. To construct as large DDI library as possible, the
expectation-maximization (EM)-based algorithm pro-
posed by Liu et al. [54] was also employed to mine
domain pairs that are frequently used in known PPIs.
Here, the domain definition was based on the Pfam
database [55], and hmmscan [56] was employed to search
for protein domains (E-value£10–5). Among the known
PPIs collected in this study, 918,116 PPIs conformed to
the requirement that the corresponding two protein
partners should contain Pfam domains. The probability
of DDIs contained in these PPIs was evaluated using the
EM algorithm. Because some domains frequently
occurred in proteins that may not participate in PPIs, to
avoid the introduction of potential noise, domains that
occurred in such a highly frequent manner were not taken
into account in the subsequent implementation of the EM
algorithm. Finally, a comprehensive DDI library was
compiled by combining the known DDIs in 3did and the
inferred DDIs through the EM algorithm. With the
principle that DDIs collected from 3did should be more
reliable, the confidence score (SDDI) for each DDI in the
library was assigned based on the following formula:

SDDI=
1

2
� ðSDDI-EM þ SDDI-knownÞ, (5)

where SDDI-known takes 1 or 0 respectively to represent
whether the DDI is known to be from 3did or not, and
SDDI-EM is the score of the DDI from the EM algorithm,
ranging from 0 to 1. The probability of interaction (PrDDI)
between one HSV-1 protein and one human protein was
inferred from the n domain pairs they contain, which is
defined as:

PrDDI=1 –∏
n

i=1
ð1 – siÞ,

si=
0, if domain pair i not in DDI library

SDDI, if domain pair i in DDI library
:

(
(6)

The DMI-based method

DMI is also considered to be an important way to mediate
human-virus PPIs. Like the DDI method, the DMI
method can also infer PPIs. The DMI library is also a
combination of known DMIs and the inferred DMIs with
the assistance of the EM algorithm. Known DMIs was
also be downloaded from 3did. Here, domain assignment
is the same as in case of the DDI method. The motif of
each protein was identified only from those motif patterns
that were contained in known DMIs. Moreover, like the
filtering strategy used in the DDI method, the evaluated
DMIs containing the highly frequently occurred domains
or motifs were removed before their scoring was under-
taken with the EM algorithm. Finally, the confidence
score (SDDI) for each DDI in the library was defined using
the following equation:

SDMI=
1

2
� ðSDMI-EM þ SDMI-knownÞ, (7)

where SDMI-known takes 1 or 0 respectively to represent
whether the DMI is known to be from 3did or not, and
SDMI-EM is the score of the DMI from the EM algorithm.
The interaction probability (PrDMI) of a human-HSV-1
protein pair containing n domain-motif pairs was further
inferred from the following formula:

PrDMI=1 –∏
n

i=1
ð1 – siÞ,

si=
0, if domain-motif pair i not in DMI library

SDMI, if domain-motif pair i in DMI library
:

(

(8)

The ML-based method

During the development of ML prediction models, both
positive and negative samples are required. Positive and
negative samples for human-virus PPI predictions are
known to be highly skewed in the real application. The
ratio of positive and negative samples used in the training
of ML-based PPI prediction models remains an open
issue. Instead of using balanced or extremely unbalanced
training sample ratios, a relatively imbalanced ratio is
often adopted. Based on the above considerations, the
ratio of positive to negative samples was empirically set to
1:10. Therefore a training dataset containing 728 positive
samples (i.e., known human-HSV-1 PPIs) and 7,280
negative samples (i.e., human-HSV-1 non-PPIs) was
compiled to develop an ML-based predictor. The positive
samples were collected from HPIDB 3.0 (the download
date is December 2018), in which HSV-1 proteins from
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different strains (not just the strain KOS) were taken into
account, while the negative samples were randomly
selected from human-HSV-1 protein pairs with unidenti-
fied interaction relationships. Moreover, two encoding
schemes were employed to transform protein pairs into
feature vectors, including a sequence-based encoding
scheme called the CKSAAP as well as a network
property-based encoding scheme called the NetTP. The
CKSAAP calculated the composition of k-space amino
acid pairs for protein pairs. The NetTP encoding scheme
considered that human proteins targeted by viral proteins
have different network properties from those that are not
targeted. Six network topology parameters were used to
infer the NetTP encoding, including the degree centrality,
betweenness centrality, closeness centrality, eigenvector
centrality, PageRank centrality, as well as eccentricity.
More details about these two encoding schemes are
available in our previous publication [43]. Subsequently,
the predictive models of the two encoding methods were
both trained by the random forest method, and they were
subsequently integrated into a stronger predictive model
through logistic regression. The performance of the two
individual models as well as the integrative model was
evaluated through a 5-fold cross-validation (Supplemen-
tary Fig. S4). In general, the integrative model could
outperform each ML model. For each query protein pair,
the final prediction model generated a prediction score
(SML) ranging from 0 to 1. Note that the F1 value was
chosen to comprehensively evaluate the performance of
the model, which is the harmonic mean of precision and
recall of the model. When the F1 reaches the maximum
under a certain threshold, the precision and recall of the
model would achieve an optimal balance. The definitions
of precision, recall, and F1 are as follows:

Precision=
TP

TP þ FP
, (9)

Recall=
TP

TP þ FN
, (10)

F1=2� Precision� Recall

Precisionþ Recall

¼ 2� TP

2� TP þ FP þ FN
, (11)

where TP, TN, FP, and FN denote the numbers of true
positives, true negatives, false positives, and false
negatives, respectively. We calculated the F1 values of
the model in the 5-fold cross-validation according to
different thresholds and took the threshold value of 0.363
corresponding to the maximum value of F1 as the final
criterion to determine whether the query pair had
interaction or not. Furthermore, the prediction score was

converted into the ML-based interaction probability score
(PrML):

PrML=
SML, SML³threshold

0, SML < threshold
:

�
(12)

ID mapping

The online UniProt ID mapping tool (https://www.
uniprot.org/uploadlists/) was used to convert other IDs
(e.g., human or viral gene IDs) into UniProt IDs.

GO enrichment analysis

The BiNGO plugin [57] in Cytoscape [58] was used for
the GO enrichment analysis. The enrichment analysis of
the UL22-targeted human proteins was conducted against
the background of 20,412 reviewed human proteins, and
the GO category of the CC was selected. To explore why
the HSV-1 targets these 283 human proteins that are
specifically expressed in brain tissues, a GO enrichment
analysis of the three categories (BP, CC, and MF) was
conducted by taking the 1,442 brain-specific human
proteins as the background (reference set). Statistical
significance was inferred from the hypergeometric test
and enriched terms were selected with a significance level
of 0.05 after the Benjamini and Hochberg False
Discovery Rate correction.

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at https://

doi.org/10.1007/s40484-020-0222-5.
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