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SUMMARY

Heterosis is the phenomenon in which hybrid progeny exhibits superior traits in comparison with those of

their parents. Genomic variations between the two parental genomes may generate epistasis interactions,

which is one of the genetic hypotheses explaining heterosis. We postulate that protein�protein interactions

specific to F1 hybrids (F1-specific PPIs) may occur when two parental genomes combine, as the proteome of

each parent may supply novel interacting partners. To test our assumption, an inter-subspecies hybrid inter-

actome was simulated by in silico PPI prediction between rice japonica (cultivar Nipponbare) and indica (cul-

tivar 9311). Four-thousand, six-hundred and twelve F1-specific PPIs accounting for 20.5% of total PPIs in the

hybrid interactome were found. Genes participating in F1-specific PPIs tend to encode metabolic enzymes

and are generally localized in genomic regions harboring metabolic gene clusters. To test the genetic effect

of F1-specific PPIs in heterosis, genomic selection analysis was performed for trait prediction with additive,

dominant and epistatic effects separately considered in the model. We found that the removal of single

nucleotide polymorphisms associated with F1-specific PPIs reduced prediction accuracy when epistatic

effects were considered in the model, but no significant changes were observed when additive or dominant

effects were considered. In summary, genomic divergence widely dispersed between japonica and indica

rice may generate F1-specific PPIs, part of which may accumulatively contribute to heterosis according to

our computational analysis. These candidate F1-specific PPIs, especially for those involved in metabolic

biosynthesis pathways, are worthy of experimental validation when large-scale protein interactome data-

sets are generated in hybrid rice in the future.

Keywords: protein interactome, heterosis, epistatic effects, protein�protein interaction prediction, genomic

selection analysis.

INTRODUCTION

Heterosis (or hybrid vigor) refers to the phenomenon in

which hybrid progeny exhibits superior traits in terms of

growth, yield, biomass, stress tolerance or disease resis-

tance compared with parents (Shull, 1908). Early in the

1870s, Charles Darwin documented that the offspring of

cross-pollinated maize were almost 25% taller than the off-

spring of self-pollinated maize. Maize and rice are among

the earliest crops for which heterosis was utilized for

breeding, and the crop yield and grain quality of these

crops have been tremendously improved in the past cen-

tury. Since the 1980s, hybrid maize has accounted for 80%
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of the total maize production in China, and the yield of

super hybrid rice peaked at 1149 kg per mu in 2017. How-

ever, the genetic and molecular mechanisms underlying

heterosis remain poorly understood despite intensive

investigations performed in recent decades.

Explanations for heterosis from quantitative genetics

aspect include dominance, overdominance and epistasis

hypotheses. The dominance hypothesis states that the

recessive deleterious alleles from one parent can be com-

plemented by the dominant beneficial alleles from another

parent (Bruce, 1910; Jones, 1917). In the overdominance

hypothesis, both alleles in hybrid progeny are equally

important, and intra-allele interaction is the reason for

expression of superior traits, as the fitness of individuals

carrying heterozygous genotypes is higher than those car-

rying homozygous genotype (Shull, 1908; East, 1936; Hull,

1945; Crow, 1948). Both dominance and overdominance

hypotheses are based on the action of a single gene, but

most heterosis-expressing traits are quantitative and thus

must involve multiple genes with different extents of effect

(Hua et al., 2003). The epistasis hypothesis emphasizes the

role of inter-allele interactions among multiple genes and

pathways, which may include all possible forms of molecu-

lar interactions, such as physical interactions among pro-

teins and small molecules, transcriptional regulation in cis

and trans, and regulatory interactions from the posttran-

scriptional, posttranslational and epigenetic machinery

(Minvielle, 1987; Schnell and Cockerham, 1992; Sun and

Kardia, 2010; Jiang et al., 2017). Evidence supporting the

role of epistasis in heterosis has been increasingly

reported in recent years, but the precise manner through

which epistasis acts via molecular interactions remains lar-

gely elusive due to the complexity of gene interactions (Yu

et al., 1997; Tang et al., 2010; Zhou et al., 2012; Schnable

and Springer, 2013).

With the availability of high-throughput biotechnology,

genome-wide investigations of heterosis mechanisms have

been intensively conducted at the genomic, transcriptomic,

proteomic and metabolomic levels (Baranwal et al., 2012).

Transcriptome comparison of the elite hybrid rice cultivar

LYP9 and its two parental lines (maternal PA64 and pater-

nal 9311) showed that differentially expressed genes

accounting for 10.6% of the genome were mostly enriched

in energy metabolism and energy transportation pathways

(Wei et al., 2009). In addition, the LYP9 transcriptome

resembled that of PA64 during early developmental stages,

but resembled that of 9311 at later stages, implying that

complex regulatory processes underlie heterosis (Wei

et al., 2009). Comparisons of the metabolomes of parents

and offspring also revealed higher metabolic activity in F1
hybrids in comparison with their parents, indicating that

heterosis may be at least partially attributed to enhanced

energy use efficiency in hybrids (Meyer et al., 2012). Gen-

ome resequencing of maize core germplasm revealed

widespread genomic variations, including a large number

of presence and absence variations (PAV) in protein-coding

genes, which may act as either deleterious or beneficial

alleles. These alleles may complement with each other in

the hybrid genome to result in heterosis (Springer et al.,

2009; Lai et al., 2010). PAVs frequently occur on paralogous

gene copies in maize. Loss and gain events for different

paralog sets among inbred lines due to long-term artificial

selection may form diverse genetic resources to produce a

more complete proteome and more complex protein inter-

actome in the hybrid genome in comparison with parental

genomes, and thus heterosis occurs (Schnable and

Springer, 2013).

Correlations between environmental responses and

heterosis have also been reported in plants. Transcriptome

analysis of the allotetraploid formed between Arabidopsis

thaliana and Arabidopsis arenosa showed that genes

encoding morning-phased clock regulators were downreg-

ulated in the allotetraploid in comparison with the two

diploid parents during daytime (Ng et al., 2017). This effect

was coincident with upregulation of genes in photosyn-

thetic and starch biosynthetic pathways, which promotes

biomass heterosis (Ng et al., 2017). Another study in natu-

ral allopolyploid Arabidopsis suecica and its progenitor

species A. thaliana and A. arenosa showed that the

allopolyploid assimilates more CO2 per unit of chlorophyll

in comparison with either of the two progenitor species

under high-intensity light (Solhaug et al., 2016). Under

low- and high-intensity light conditions, starch accumula-

tion exhibited significant differences between the allopoly-

ploid and its diploid progenitors, suggesting that heterosis

is perhaps a result of increased energy efficiency in combi-

nation with environmental responses.

Mechanisms of heterosis must be very complex, involve

many genes with diverse genetic effects, and are associ-

ated with biological processes and molecular pathways.

Over the past few decades, comprehensive evidence sup-

porting dominance and overdominance theories has been

provided, but evidence for the involvement of epistasis in

heterosis, especially in connection with genomic and

molecular machinery, remains poorly reported. Protein�
protein interactions (PPIs), as one form of inter-allelic gene

interaction, definitely contribute to heterosis via epistatic

effects. However, it is extraordinarily difficult to obtain an

accurate profile of the entire protein interactome due to its

complex and dynamic nature, so the role of PPIs in hetero-

sis remains essentially unknown. In this work, we applied

a systems biology approach by incorporating protein inter-

actome simulation and genomic selection (GS) prediction

to investigate the role of the hybrid protein interactome in

heterosis using rice as a model. Our analyses reveal that

the protein interactome in F1 hybrids is indeed more

diverse than that of either parent and may contribute to

heterosis via epistatic effects.
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RESULTS

Simulation of the protein interactomes of F1 hybrid rice

The proteome of an F1 hybrid is a combination of the par-

ental proteomes. Thus, more diversified PPIs and networks

may exist in F1 offspring in comparison with each parent.

To simulate the F1 (Nipponbare 9 9311) interactome, in sil-

ico prediction of PPIs was conducted in two steps: within

each parental proteome and between the two parental

proteomes of japonica Nipponbare and indica 9311 (Exper-

imental Procedures). In the first step, Interolog (Garcia-

Garcia et al., 2012) was used to build three preliminary

interactomes, including 99 816 PPIs formed by 6798 pro-

teins in Nipponbare, 105 783 PPIs formed by 7639 proteins

in 9311, and 205 883 PPIs formed by 7590 and 6831 pro-

teins in Nipponbare and 9311, respectively (Figure 1a). In

the second step, PRISM (Tuncbag et al., 2011) was used to

screen high-confidence PPIs from Interolog’s predictions,

resulting in 10 695 PPIs formed by 2073 proteins in Nippon-

bare, 10 185 PPIs formed by 2247 proteins in 9311, and 20

913 PPIs formed by 2039 and 2256 proteins in Nipponbare

and 9311, respectively (Figure 1a).

The simulated F1 interactome was then categorized into

four groups, namely 4612 (20.5%) F1-specific PPIs, 6482

(28.8%) 9311-specific PPIs, 7177 (31.0%) Nipponbare-speci-

fic PPIs, and 4227 (19.7%) common PPIs with the following

rule that assumes A/A0 and B/B0 are two pairs of orthologs

in Nipponbare and 9311:

1. Common PPIs: if A interacts with B in parent Nippon-

bare, and A0 interacts with B0 in parent 9311, while A inter-

acts with B0 and A0 interacts with B in the F1 hybrid;

2. F1-specific PPIs: if A does not interact with B in parent

Nipponbare, and A0 does not interact with B0 in parent

9311, while A interacts with B0 and A0 interacts with B in

the F1 hybrid;

3. Nipponbare-specific PPIs: if A interacts with B in parent

Nipponbare, and A0 does not interact with B0 in parent

9311, while A does not interact with B0 and A0 does not

interact with B in the F1 hybrid;

4. 9311-specific PPIs: if A does not interact with B in parent

Nipponbare, but A0 interacts with B0 in parent 9311, while

A does not interact with B0 and A0 does not interact with B

in the F1 hybrid.

Proteins participating in the four groups of PPIs were

then correspondingly categorized as 1441 proteins in F1-

specific PPIs, 1618 proteins in 9311-specific PPIs, 1915 pro-

teins in Nipponbare-specific PPIs, and 1209 proteins in

common PPIs. Proteins may participate in the PPIs of more
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99 816 PPIs among
6798 proteins
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prediction
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F1 hybrid
Nipponbare 9311

205 883 PPIs among
14421 proteins

10 185 PPIs among
2247 proteins

PRISM
prediction

10 695 PPIs among
2073 proteins

20 913 PPIs among
4295
 

proteins

19.7 %

20.5%

31.0%

28.8%

4612 F1-specific PPIs 
among 1441 proteins 

130
252

176
71

287

109
116411164

446
80402

25 18

4

Proteins in F1-specific PPIs
Proteins in 9311-specific PPIs
Proteins in Nipp-specific PPIs
Proteins in common PPIs

4227 common PPIs 
among 1209 proteins 

7177 Nipp-specific PPIs 
among 1915 proteins 

6482 9311-specific PPIs 
among 1618 proteins 

(a)

(b)

Figure 1. Simulation of a hybrid protein interac-

tome in the F1 progeny of japonica ssp (cv. Nippon-

bare) and indica ssp (cv. 9311).

(a) Interolog software was first used to predict pro-

tein�protein interactions (PPIs) within the 9311 and

Nipponbare proteomes, as well as between the two

proteomes. PRISM was used to identify high-confi-

dence PPIs from Interolog’s predictions. High-confi-

dence PPIs were classified as common PPIs,

F1-specific PPIs, Nipponbare-specific PPIs or 9311-

specific PPIs.

(b) Overlapping numbers of proteins in the four

groups of PPIs.
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than one group. While 1982 proteins (73.7%) participated

in at least two groups of PPIs, 130 proteins only partici-

pated in F1-specific PPIs that were not found in the other

three groups of PPIs (Figure 1b). These 130 proteins are

worthy of special attention, as they may generate novel

biological functions unique to F1 hybrids. Functional anno-

tation of these 130 proteins indicates that most of them

possess enzymatic activities, such as serine acetyltrans-

ferase activity, nucleoside diphosphate kinase activity, or

cysteine synthase activity (Table S1).

To assess the reliability of predicted F1-specific PPIs, we

further examined the subcellular co-localization and func-

tional similarity of interacting protein pairs in comparison

with 1000 randomly generated PPI networks using the

same set of genes involved in F1-specific PPIs. The results

indicate that the number of co-localized PPIs and the GO

similarities of F1-specific PPIs are higher than those of any

random network (empirical P < 0.001). Further, we exam-

ined the co-expression of japonica and indica alleles from

the genes involved in F1-specific PPIs by using the RNA-

seq data in accession of GS113769 (Chen et al., 2018) in

NCBI GEO (Experimental Procedures). In GSE113769, the

RNA-seq samples were collected from the endosperm tis-

sues of F1 hybrids generated from two distinct, reciprocal

crosses of japonica and indica rice. Out of the 1001 and

988 endosperm-expressed F1-specific genes, 996 (99.5%),

991 (99.0%), 979 (99.1%) and 965 (97.7%) were expressed

(FPKM > 0) from both japonica and indica alleles in the

four crosses (Table S2). The results imply that the majority

of the genes involved in F1-specific PPIs exhibit co-expres-

sion of both japonica and indica alleles in the endosperm

tissue of F1 hybrids.

F1-specific PPIs are attributed to PAVs and missense varia-

tions. F1-specific PPIs may arise from two sources of

genomic variations between japonica and indica rice: PAVs

and missense variations occurring on protein-coding genes

that cause allelic difference between the two parental gen-

omes. For instance, if protein A in Nipponbare lacks its

ortholog A0 in 9311, and protein B (protein A’s interacting

protein) in Nipponbare has a defective missense variation,

but its ortholog B0 in 9311 is intact, an inter-subspecies PPI

between A in Nipponbare and B0 in 9311 may occur as an

F1-specific PPI. In other words, if no interactions between A

and B in Nipponbare or between A0 and B0 in 9311 are

observed, but an interaction between A in Nipponbare and

B0 in 9311 is observed, this PPI is defined as an F1-specific

PPI. To test this conjecture, 4612 F1-specific PPIs were clas-

sified into six types of PPIs based on PAVs and missense

variations (Figure 2a). Figure 2(b) shows an example of a

Type IV F1-specific PPI, in which a single non-synonymous

single nucleotide polymorphism (SNP) that changes one

amino-acid residue at the interaction interface may alter

the interactions of ortholog pairs. BGIOSGA005499 in 9311

and OS05G0540100 in Nipponbare form an F1-specific PPI.

However, no PPI between OS02G0776800 (an ortholog of

BGIOSGA005499) and OS05G0540100 (an ortholog of

BGIOSGA017650) was predicted in Nipponbare, because

one missense variation occurred on the 90th amino-acid

residue, which was predicted to be an interacting residue

between BGIOSGA005499 and OS05G0540100. In 9311,

no PPI between BGIOSGA005499 (an ortholog of

OS02G0776800) and BGIOSGA017650 (an ortholog of

OS05G0540100) was predicted due to the presence of

another missense variation on the second interacting resi-

due (the 308th amino acid). The second example in Fig-

ure 2(c) shows another F1-specific PPI formed by

BGIOSGA001050 and OS12G0407500, for which no PPI was

predicted due to an 84-nt-long indel and a series of non-

synonymous SNPs.

Almost half of the F1-specific PPIs were caused by PAVs,

while the other half were attributed to missense variations

caused by either non-synonymous SNPs or indel frag-

ments on either orthologous pair (Figure 2d). It is worth

noting that missense variations occurring on PPI interfaces

and non-interface regions may abolish PPIs. Among the

27.7% of F1-specific PPIs in which both interacting partners

have orthologs in the two parental genomes, missense

variations were found outside the predicted PPI interface

regions (Figure 2d). Missense variations outside the PPI

interface may be due to protein structural changes or the

failure of PRISM to predict the PPI interface region. To

exclude the possibility that causation of F1-specific PPIs by

missense variations is a coincidence, we also examined

Type IV, Type V and Type VI PPIs among the 4227 common

PPIs, which revealed that only 191 (4.5%) common PPIs

exhibited interface missense variations on at least one

partner protein in each PPI (Figure 2d). The significant dif-

ference between common and F1-specific PPIs indicates

that PAVs and missense variations are the main sources of

F1-specific PPIs in F1 hybrids.

Part of F1-specific PPIs are involved in metabolic path-

ways. The enriched pathways of genes involved in F1-

specific PPIs may reflect novel biological functions that

enhance the trait performance of F1 hybrids. Therefore, we

subsequently analyzed the functional enrichment of pro-

teins participating in F1-specific PPIs by comparing them

with proteins in common PPIs using the PANTHER protein

classification system (Mi et al., 2016). When functional

enrichments among the proteins participating in F1-specific

PPIs, common PPIs and subspecies-specific PPIs were

compared, no significantly enriched classes were found

(Figure 3a). We suspect that this finding may be due to the

large portion of proteins shared by the four groups of PPIs.

Next, we focused our attention on the 130 proteins that

only participate in F1-specific PPIs, and compared their

functional annotations with the 493 and 818 proteins that
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also participate in common PPIs and subspecies-specific

PPIs, respectively (Figure 3a). While the ‘oxidoreductase’,

‘transferase’ and ‘isomerase’ categories showed statisti-

cally significant enrichment (P ≤ 0.05) for the 130 proteins

that only participate in F1-specific PPIs, the category of

‘lyase’ showed weak significance (P = 0.065) in the analysis

of the 493 proteins also participating in common PPIs.

These four enriched functional classes indicate that F1-

specific PPIs are potentially involved in metabolite biosyn-

thesis pathways. Because enzymes involved in metabolite
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Figure 3. F1-specific protein�protein interactions (PPIs) are likely enriched in enzyme interactions and metabolic pathways.

(a) Functional categorization of the proteins in different types of PPIs. The top 11 functional categories are shown. Each category contains at least 100 proteins

out of the total set of 6183 proteins. The histogram on the left shows the proportions of the 1441 proteins in F1-specific PPIs, 1209 proteins in common PPIs, and

3533 proteins in subspecies-specific PPIs in each of the 11 protein functional categories. No significantly enriched category was detected in any of the three

types of proteins. Because a large number of proteins in the four groups overlapped, the 1441 proteins in the F1-specific PPIs were further classified into a set of

130 proteins only participating in F1-specific PPIs, as well as 493 and 818 proteins also participating in common and subspecies-specific PPIs, respectively. The

proportions of these three types of proteins in the 11 categories are shown on the right histogram.

(b) Percentages of the eight groups of proteins present in metabolic gene clusters (MGCs). 1. Proteins involved in F1-specific PPIs; 2. Proteins involved in Nip-

ponbare-specific PPIs; 3. Proteins involved in 9311-specific PPIs; 4. Proteins involved in common PPIs; 5. Proteins only involved in F1-specific PPIs; 6. Proteins

only involved in Nipponbare-specific PPIs; 7. Proteins only involved in 9311-specific PPIs; 8. Proteins only involved in common PPIs.

(c) Percentages of genes in the clusters that were identified as metabolic genes. The eight groups are the same as those shown in (b).

Figure 2. F1-specific protein�protein interactions (PPIs) arise from ortholog absence and/or missense variations.

(a) Scheme to illustrate six types of situations in which F1-specific PPIs are generated in the F1 genome. Type I, a pair of interacting proteins in an F1-specific PPI

both lack orthologs; Type II, one protein lacks an ortholog and its partner has an ortholog containing missense variations on the interaction interface; Type III,

one protein lacks an ortholog and its partner has an ortholog containing missense variations not on the interaction interface; Type IV, both interacting proteins

have orthologs, and both contain missense variations on the interface; Type V, both interacting proteins have orthologs, and one contains missense variations

on the interface while the other does not; Type VI, both interacting proteins have orthologs, and both contain missense variations not on the interface.

(b) One example of a Type IV F1-specific PPI. BGIOSGA005499 and OS02G0776800 are a pair of orthologs in 9311 and Nipponbare, with only one non-synony-

mous single nucleotide polymorphism (SNP) causing an Asp-to-Glu substitution on the interacting residue. OS05G0540100 and BGIOSGA017650 are orthologs

with a Glu-to-Gln substitution on the other interacting residue. Because of the two substitutions on the predicted interacting interface, BGIOSGA005499 and

OS05G0540100 formed a between-subspecies PPI, but no PPIs were predicted between BGIOSGA005499 and BGIOSGA017650 in 9311 or between

OS02G0776800 and OS05G0540100 in Nipponbare. The residues marked in red in the sequence alignment indicate the interaction interface that is also marked

in red in the 3D structures of the interacting protein pair.

(c) Another example of an F1-specific PPI between BGIOSGA001050 in 9311 and OS12G0407500 in Nipponbare. Because of a 24-AA deletion on OS01G0669100,

no PPI was detected between OS01G0669100 and OS12G0407500 in Nipponbare. Because of another Lys-to-Ser substitution on the interacting residue, no PPI

was detected between BGIOSGA001050 and BGIOSGA036333 in 9311.

(d) Proportions of the six types of genomic variations causing F1-specific PPIs.
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biosynthesis are usually composed of multiple members

of a gene family and mostly occur as gene clusters on

chromosomes, we subsequently examined whether the

proteins involved in F1-specific PPIs tend to be localized in

metabolic gene clusters (MGCs; Hen-Avivi et al., 2016;

Nutzmann et al., 2016; Schlapfer et al., 2017).

We used the software pipeline PlantClusterFinder to

annotate MGCs in the japonica (cv. Nipponbare) and

indica (cv. 9311) reference genomes. Next, proteins

involved in F1-specific PPIs, Nipponbare-specific PPIs,

9311-specific PPIs and common PPIs were mapped to the

genomic regions harboring MGCs. On average, 15.1% of

the proteins from the four groups matched with the genes

in MGCs. When only the non-overlapping genes in each

group were analyzed, the average percentage of genes

that occurred in MGCs increased to 20.2% (Figure 3b).

Because a region harboring MGCs may also contain non-

metabolic genes, we also examined the matching rates of

the genes in MGCs with metabolic genes. Among the 130

genes that only participate in F1-specific PPIs, 96.2%

encode metabolic enzymes (Figure 3c). These results indi-

cate that proteins participating in F1-specific PPIs, and

especially those that only participate in F1-specific PPIs,

tend to be clustered and functionally involved in meta-

bolic pathways.

F1-specific PPIs accumulatively contribute to heterosis as

epistasis effects. Epistasis has been hypothesized as

part of the genetic components of heterosis, which

arises from a variety of inter-subspecies interactions due

to the widely dispersed genetic variations between the

two parental genomes. Although our computational sim-

ulation of the hybrid interactome has indicated the exis-

tence of F1-specific PPIs, whether they contribute to

heterosis or not requires further analysis. To test the

genetic effects of F1-specific PPIs in heterosis, we used a

set of breeding data from a real-world hybrid rice GS-

assisted breeding project conducted in Changsha, a

provincial capital in southern China (Table S3). One of

the unique features of this F1 population is that hybrids

of these breeding lines frequently express superior

heterosis performance. The lines include 43 maternal

lines and 66 paternal lines that were crossed with a

North Carolina II (NCII) design. This GS-assisted breed-

ing project used 925 F1 hybrids, accounting for one-third

of all hybridization combinations, as a training popula-

tion to derive a GS model, which was used to predict

two yield-related traits, grain yield (GY) and tiller num-

ber (TN), for the remaining hybridization combinations.

The genotypes of the 109 parental lines were profiled

using Illumina Rice Genotyping Arrays containing 50 000

SNPs, and the genotypes of 925 F1 hybrids were compu-

tationally inferred by combining the alleles from each

parent.

To dissect the genetic components behind GY and TN

traits, the GS model considered additive (A), dominant (D)

and epistatic (E) effects, which were further decomposed

into additive by additive (A 9 A) interactions, additive by

dominant (A 9 D) interactions, and dominant by dominant

(D 9 D) interactions. To test the overall prediction accuracy

of the model, the five types of genetic effects were sequen-

tially added in the following order: A, D, A 9 A, A 9 D and

D 9 D. Fivefold cross-validation was used to compute an

average Pearson correlation between the observed and

predicted values. When the GS model considered only

additive effects, the prediction accuracies for GY and TN

were only 0.398 and 0.475, respectively (Figure 4a,g). When

the GS model was adjusted to also consider D, A 9 A,

A 9 D and D 9 D effects, the prediction accuracies gradu-

ally increased to 0.712 and 0.758 for GY and TN, respec-

tively, as more effects were added. These results indicate

that non-additive effects, especially epistatic effects,

account for a considerable proportion of the genetic com-

ponents of GY and TN, and thus superior heterosis perfor-

mance is expressed in this hybrid population with high

frequency.

We subsequently validated how F1-specific PPIs func-

tion in heterosis for this population by excluding SNPs

adjacent to genes in F1-specific PPIs from the GS model

and testing its prediction accuracy. If the prediction accu-

racy drops after SNPs are excluded, then the removed

genes may contribute to the traits. Because SNPs may

not be evenly distributed in the genome, and some of

the genes in F1-specific PPIs may be localized in clusters,

we first identified genomic blocks with the potential to

include more than one SNP using the procedure

described in the Experimental Procedures. Next, SNPs

were removed from the GS model in a block-by-block

manner from the longest to the shortest. For the 1441

genes in 4612 F1-specific PPIs, we identified 998 blocks

covering these genes, including 4004 SNPs. Every time a

block was removed, a Pearson correlation was computed

to indicate the model performance, until all 998 blocks

were removed. For each removal, a set of SNPs equal to

the number of SNPs in the removed block was randomly

picked from the array for calculation of the Pearson cor-

relation as contrasts.

When the GS model only took additive effects into

account, removal of the SNP blocks covering the 1441

genes in F1-specific PPIs did not reduce the prediction

accuracy in comparison with that obtained using the GY

and TN traits (Figure 4b,h). The same patterns were

observed for the GS model that took only dominant

effect into account (Figure 4c,i). For A 9 A, A 9 D and

D 9 D epistatic effects, the gradual removal of SNP

blocks caused a gradual decrease in the prediction accu-

racy for the GY and TN traits (Figure 4d–f, j–l). Therefore,
these results support the assumption that the F1-specific
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Figure 4. F1-specific protein�protein interactions (PPIs) may contribute to heterosis via epistatic effects.

(a) The prediction accuracy of the grain yield trait gradually increases when the genomic selection (GS) model accumulatively takes additive effects, dominant

effects and three types of epistatic effects into consideration. The highest prediction power was reached when all five types of genetic effects were considered.

For the GS model only considering (b) additive or (c) dominant effects, removal of single nucleotide polymorphisms (SNPs) adjacent to genes involved in

F1-specific PPIs did not reduce prediction accuracy. For the GS model only considering the three types of epistatic effects ((d) additive 9 additive, (e) addi-

tive 9 dominant and (f) dominant 9 dominant), removal of SNPs adjacent to genes involved in F1-specific PPIs reduced prediction accuracy. The red lines repre-

sent the control dataset as a contrast (generated by removing the same number of SNPs, which were randomly picked from the genome). The blue lines

represent the actual dataset, which was generated by accumulatively removing SNPs adjacent to genes (within 5 kb) involved in F1-specific PPIs. SNPs adjacent

to each other (within 5 kb) were merged as one block. The blocks containing SNPs were removed in order from the longest block to the shortest block, as indi-

cated by the arrow on the X-axis.

(g-l) The same analysis was performed for the tiller number trait.
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PPIs may play an epistatic role in enhancing the heterosis

performance of F1 hybrids, in addition to the additive and

dominant effects. Moreover, the contribution of F1-speci-

fic PPIs to heterosis may act in an accumulative fashion,

reflected by the gradual decrease of GS prediction accu-

racy when genes involved in F1-specific PPIs were

removed from the prediction model one by one.

DISCUSSION

Insights into heterosis mechanisms from simulated

protein interactome

Heterosis has been investigated for more than a century

from genetic, molecular and genomic aspects, but the

underlying mechanisms remain elusive (Schnable and

Springer, 2013). Expression of heterosis may be a result

of any possible change occurred during transcriptional

and posttranscriptional, translational and posttransla-

tional processes, and physical interactions between any

large or small molecules in a hybrid genome (Minvielle,

1987; Schnell and Cockerham, 1992; Sun and Kardia,

2010; Jiang et al., 2017). In addition, although three main

quantitative genetics hypotheses, dominance, overdomi-

nance and epistasis, have been proposed for decades,

researchers have recently attempted to find connections

between the genetic and molecular mechanisms behind

heterosis. Especially for epistasis, which may involve dif-

ferent types of molecular interactions, any single or

accumulative changes in the biological networks of

hybrids may cause heterosis to different extents (Birchler

et al., 2006, 2010). The effects of dominance and over-

dominance have been revealed through studying geno-

mic variation from the aspect of population genetics.

However, the relationship between protein interactions

and heterosis has been overlooked due to the complexity

and difficulty in profiling a bona fide and comprehensive

interactome in F1 hybrids. In addition, the contribution of

individual F1-specific PPI to heterosis may be weaker

than the effects arising from genetic variation on major

loci, but cumulative effects arising from the combination

of dozens to thousands of F1-specific PPIs with minor

contributions may contribute to the yet undiscovered

component of heterosis. Our study utilizes computational

approaches to simulate the protein interactome in F1
hybrids together with GS methods to evaluate the contri-

bution of PPIs to heterosis. Although this systems biol-

ogy approach may involve a certain proportion of false

positives that are difficult to estimate, the results pin-

point an interesting direction for deciphering complex

heterosis mechanisms. Future experimentally generated

PPI data in hybrid rice are expected to validate the con-

clusion drawn from the current study, providing further

understanding of heterosis at the level of protein interac-

tions.

F1-specific PPIs may complement metabolic pathways to

enhance F1 fitness. We simulated the protein interac-

tomes of the F1 hybrid of indica ssp. (cv. 9311) 9 japonica

ssp. (cv. Nipponbare) and its parents, which are elite

inbred varieties of two rice subspecies with comprehensive

reference genomes and annotations. A previous compara-

tive analysis of the 9311 and Nipponbare genomes

revealed extensive structural variations in addition to

SNPs, including copy number variations, PAV, segmental

and tandem duplications, and chromosomal inversion and

translocations (Wang et al., 2005; Yu et al., 2005). These

genomic variations may cause differential gene expression

and molecular interactions between these two subspecies

of rice, resulting in more diversified biological networks in

their F1 hybrids in comparison with their own (Wang et al.,

2012). Comparison of the three sets of interactomes

showed that common PPIs formed by the same pair of

interacting proteins in 9311, Nipponbare and the F1 hybrid

only accounted for 19.7% of all PPIs, while F1-specific PPIs

accounted for 20.5% of all PPIs (Figure 1a). This result indi-

cates that the hybrid interactome is indeed diversified due

to the combination of the two parental proteomes. In addi-

tion, the hybrid interactome includes novel PPIs, as each

parent may supply novel interacting partners. In addition,

nearly half of the F1-specific PPIs (the sum of Type I, II and

III PPIs) were identified because the interacting orthologs

were missing from at least one parental genome, which

indicated that PAV for protein-coding genes is the major

source of F1-specific PPIs (Figure 2b). Moreover, the

remaining F1-specific PPIs were due to missense variations

caused by non-synonymous SNPs or indels on interaction

interfaces or elsewhere on the protein sequences, which

cause protein structural changes to form F1-specific PPIs

(Figure 2b). This result supports previous observations that

PAVs are widespread among the genomes of maize inbred

lines and probably contribute to heterosis through comple-

mentation of non-allelic paralogs in hybrid genomes (Eich-

ten et al., 2011; Hufford et al., 2012; Schnable and

Springer, 2013). With the newly available Mo17 reference

genome (Sun et al., 2018), a similar interactome compar-

ison among B73, Mo17 and their F1 hybrid can be con-

ducted to illustrate the role of F1-specific PPIs in maize

heterosis.

We also found that genes participating only in F1-specific

PPIs are functionally enriched in the categories of trans-

ferase, oxidoreductase, lyase and isomerase in comparison

with common PPIs. These functional categories mostly con-

sist of metabolic enzymes that are responsible for produc-

ing metabolites or small molecules to participate in various

cellular functions necessary for survival, stress responses

or environmental fitness. Because metabolite biosynthesis

genes in plant genomes are usually organized in clusters,

and some genes in F1-specific PPIs are metabolic enzymes,

we were inspired to examine the enrichment of F1-specific
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PPIs in MGCs (Hen-Avivi et al., 2016; Nutzmann et al., 2016;

Schlapfer et al., 2017). Our analysis showed that, in compar-

ison with genes in common PPIs, genes in F1-specific PPIs

tend to be located in MGCs. Taking the fact that metabolic

genes are a group of rapidly evolving genes that proliferate

via tandem duplication to diversify the metabolome to

enhance environmental fitness (Ober, 2005; Hollister, 2015),

metabolic genes specific to japonica and indica rice may be

complemented by each other to form relatively more com-

plete metabolic networks in F1 hybrids in comparison with

their parents. As a result, the environmental fitness of F1
hybrids is enhanced, and this change manifests as heterosis

in various traits. To a certain extent, our analysis of F1-speci-

fic PPIs supports the previous finding that heterosis may be

a result of environmental fitness, as beneficial alleles from

both parents favoring fitness are combined and comple-

ment deleterious alleles in the offspring genome (Chen,

2013; Li et al., 2018).

F1-specific PPIs contribute to heterosis in a quantitative,

epistatic manner. Our analysis showed that PAVs and

missense variations are the primary causes of F1-specific

PPIs and seem to be an effect of superior alleles comple-

menting deleterious alleles (Springer et al., 2009; Schnable

and Springer, 2013). However, further evidence was

required to determine whether the contributions of F1-

specific PPIs to heterosis fit into the dominance, overdomi-

nance and/or epistasis models. To decompose the genetic

effects of F1-specific PPIs, we applied GS-based trait pre-

diction using an F1 population consisting of 925 hybrids

from a real-world breeding project based on a NCII mating

design. In contrast with the other four selected popula-

tions, this population was constructed with modern inbred

lines by a company to breed superior hybrid rice varieties

for many years. Two interesting results were observed

when SNP markers adjacent to genes in F1-specific PPIs

were gradually removed from GS prediction models that

separately considered additive, dominant and epistatic

effects (Figure 4). First, removal of these SNPs did not

reduce the prediction accuracy for the GS model when

only additive and dominance effects were considered. In

contrast, when the same group of SNPs was removed, the

prediction accuracy of the GS model considering all three

types of interactions in epistasis effects (additive 9 addi-

tive, additive 9 dominant, dominant 9 dominant) was

clearly reduced. Second, gradual removal of SNPs pro-

duced a gradual decline in prediction accuracy within a

range of 0.05�0.1 differences, suggesting that the epistatic

effects of F1-specific PPIs act in a quantitative manner. Nev-

ertheless, the simulated interactomes were based on PPI

prediction using a stringent pipeline by combining Intero-

log and PRISM results using reference/conserved PPIs col-

lected from other model species. Thus, the 4612 F1-specific

PPIs in silico predicted from the 9311 and Nipponbare

reference genomes might only account for a small fraction

of the actual number of PPIs. Therefore, the number of F1-

specific PPIs and their contributions to heterosis are diffi-

cult to determine and may be underestimated. Based on

these findings, we conclude that F1-specific PPIs likely play

a minor epistatic role in contributing to heterosis in a

quantitative manner.

EXPERIMENTAL PROCEDURES

Simulation of the F1 hybrid interactome using Interolog

The Interolog was used to simulate the protein interactome of the
F1 hybrid of indica ssp. (cv. 9311) 9 japonica ssp. (cv. Nippon-
bare), based on orthologous PPIs (Garcia-Garcia et al., 2012). Ara-
bidopsis thaliana, Saccharomyces cerevisiae, Caenorhabditis
elegans, Drosophila melanogaster, Escherichia coli and Homo
sapiens with abundant experimentally validated PPIs were
selected as reference organisms, whose protein sequences were
obtained from the UniProt database (The UniProt Consortium,
2017). The protein sequences of Nipponbare and 9311 were
obtained from the Ensembl Plants database (Bolser et al., 2016).
The Inparanoid algorithm (Remm et al., 2001) with the BLOSUM80
substitution matrix was used to identify orthologs between Nip-
ponbare/9311 and A. thaliana, whereas the BLOSUM62 between
Nipponbare/9311 and S. cerevisiae (and C. elegans, D. melanoga-
ster and H. sapiens), BLOSUM45 between Nipponbare/9311 and
E. coli. The PPIs of the above six species were collected from the
BioGRID (Chatr-Aryamontri et al., 2017), DIP (Xenarios et al.,
2002), MINT (Licata et al., 2012) and IntAct (Orchard et al., 2014)
databases. Additional PPIs of H. sapiens and A. thaliana were col-
lected from the HPRD (Keshava Prasad et al., 2009) and TAIR
(Lamesch et al., 2012) databases, respectively.

Simulation of the F1 hybrid interactome using PRISM. To
screen for high-confidence PPIs, PRISM was applied on Interolog-
predicted PPIs, based on the rationale that if certain surface
regions of two proteins resemble each side of a known interface
of a template complex, the two proteins may interact via similar
surface regions (Keskin et al., 2008; Tuncbag et al., 2011; Baspinar
et al., 2014). For each pair of interacting proteins predicted by
Interolog, the corresponding protein complex structure was con-
structed. Two residues from a PPI were defined as the interface
residues if the shortest distance between any of their atoms was
less than 4 �A (Li et al., 2016). All interface residues of a PPI consti-
tuted its interaction interface.

As the PRISM requires to know the 3D structures of two pro-
teins, we first predicted 3D structures. BLAST was used to search
the homologous templates of proteins in the PDB database for
homology modeling. Three criteria were considered: (1) the align-
ments between proteins and templates had at least 30% sequence
identity and covered at least 40% of the protein lengths; (2) X-ray
structures as templates were preferred over NMR structures; (3)
templates with resolutions below 5 �A were prioritized. Then, five
models for each protein were produced using Modeller (Sali and
Blundell, 1993) according to the best template. The model with
the lowest DOPE score was regarded as the best 3D structure of
the protein after truncating unaligned residues at the N and C ter-
mini (Mosca et al., 2013).

Reliability assessment of the predicted F1 hybrid interac-

tome. We used subcellular localization data and Gene
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Ontology (GO) annotations to assess the reliability of F1-specific
PPIs. The methods used for the assessment have been widely
used in Interolog-based PPI predictions (He et al., 2008; Gu
et al., 2011; Zhang et al., 2016, 2017). First, we used the proteins
in the predicted F1-specific PPIs to generate 1000 random PPI
networks by randomly rewiring the protein pairs. Then, we pre-
dicted the subcellular localizations by the MultiLoc2 software
(Blum et al., 2009) and obtained the GO terms from the Ensembl
Plants database. Further, the number of co-localized PPIs and the
GO similarities between F1-specific PPIs and randomly generated
PPIs were compared. We downloaded previously published
RNA-seq dataset of japonica 9 indica F1 hybrids profiled in
endosperm from NCBI GEO GSE113769 (Chen et al., 2018).
Based on GSE113769, the co-expression of japonica and indica
alleles from the genes involved in F1-specific PPIs can be verified
by using the SNPs between japonica and indica, which can be
used to differentiate allelic expression. In GSE113769, the sam-
ples were collected from the early developing endosperm tissues
(7 days after pollination) of F1 hybrids. The F1 hybrids were gen-
erated from two distinct, reciprocal crosses of japonica and
indica rice between Liuqianxin-A and Rongfeng-B (L 9 R), Rong-
feng-A and Liuqianxin-B (R 9 L), Yu6-A and Wufeng-B (Y 9 W),
and Wufeng-A and Yu6-B (W 9 Y). Liuqianxin and Yu6 are
japonica rice, Rongfeng and Wufeng are indica rice, whose F1
combinations generate strong heterosis. In L 9 R and R 9 L
crosses, a total of 62 092 SNPs identified from 12 295 endo-
sperm-expressed (FPKM > 0) genes were used to distinguish
japonica and indica alleles; and a total of 59 097 SNPs were
identified from the 12 373 endosperm-expressed genes in Y 9 W
and W 9 Y crosses. This result indicates that over 63% of the
total 19 459 endosperm-expressed genes possess at least one
SNP that can be used to differentiate the japonica and indica
alleles. In the four sets of crosses, 11 823 (96.16%), 11 863
(96.49%), 11 805 (95.41%) and 11 647 (94.13%) genes were
expressed (FPKM > 0) from both japonica and indica alleles.
Examination of the expression of F1-specific genes showed that
1001 (69.47%) and 988 (68.56%) out of 1441 F1-specific genes
possessing at least one SNP were expressed in the endosperm
of the two reciprocal crosses, which could be used to evaluate
allelic expression in F1 hybrid.

Identification of metabolic gene clusters. The MGCs in the
rice genome were identified in silico by four steps. First, Ensem-
ble Enzyme Prediction Pipeline (E2P2) software was used to pre-
dict potential enzymes based on homology transfer (Chae et al.,
2014). Second, Pathway Tools software assigned reactions to
these enzymes and identified potential metabolic pathways (Karp
et al., 2011). Third, protein paralogs were identified by all-
against-all BLAST, and a Markov cluster algorithm (MCL, https://
micans.org/mcl/). Fourth, DNA sequences, gene positions, Path-
way Tools and MCL results were used as input for PlantClus-
terFinder software to identify genome-scale MGCs (Schlapfer
et al., 2017). Each MGC satisfied the following four criteria: (1)
contained at least three metabolic genes; (2) contained at least
two reactions; (3) all genes were located contiguously on the
same chromosome; (4) was not composed solely of repetitive
metabolic genes (Schlapfer et al., 2017). PlantClusterFinder use
multiple iterations to merge adjacent metabolic genes into clus-
ters. Each cluster may contain non-metabolic genes in addition
to metabolic genes.

Trait prediction analysis using GS models. The F1 popula-
tion used for GS analysis included 925 F1 hybrids from the cross-
ing of 43 maternal lines and 66 paternal lines based on a NCII

design scheme from an actual rice breeding project, which was
carried out by a breeding company in Changsha in 2015. The 109
parental lines were genotyped using 50K-SNP Illumina Arrays. GY
and TN were the two yield-related traits used for the GS predic-
tion. SOMMER software was used to estimate additive, dominant
and epistatic effects, as well as to construct the best linear unbi-
ased prediction (BLUP) model (Covarrubias-Pazaran, 2016). The
model prediction accuracy was evaluated by fivefold cross-valida-
tion. First, 4/5 of the F1 hybrids were used as a training set to
derive the BLUP model, after which the remaining 1/5 of the F1
hybrids were used as a test set for trait prediction. This procedure
was repeated five times, and the average of the five Pearson cor-
relation values was taken as the model accuracy.

To evaluate the effects of additive, dominant and epistatic com-
ponents in correlation with F1-specific PPIs, SNPs adjacent to 1441
F1-specific genes were removed from the GS model, after which
the prediction accuracy was recalculated. In the first round, SNPs
falling within 5 kb upstream and downstream of F1-specific genes
were merged as initial blocks. In the second round, SNPs falling
within 2.5 kb upstream and downstream of the initial blocks were
merged into additional blocks. In the third round, blocks adjacent
to each other (within 2.5 kb upstream and downstream) were
merged as the final blocks. Using this procedure, a total of 998
blocks containing 4004 SNPs were selected for the analysis. For
each GS prediction, one block of SNPs was removed, while the
same number of SNPs was also removed from the model as a con-
trast, until all 998 blocks were removed. This procedure was per-
formed in an accumulative manner so that blocks of SNPs were
removed in order from the longest block to the shortest block.
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