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ABSTRACT: Plant−pathogen protein−protein interactions (PPIs) play crucial roles in the
arm race between plants and pathogens. Therefore, the identification of these interspecies
PPIs is very important for the mechanistic understanding of pathogen infection and plant
immunity. Computational prediction methods can complement experimental efforts, but
their predictive performance still needs to be improved. Motivated by the rapid development
of natural language processing and its successful applications in the field of protein
bioinformatics, here we present an improved XGBoost-based plant−pathogen PPI predictor
(i.e., AraPathogen2.0), in which sequence encodings from the pretrained protein language
model ESM2 and Arabidopsis PPI network-related node representations from the graph
embedding technique struc2vec are used as input. Stringent benchmark experiments showed
that AraPathogen2.0 could achieve a better performance than its precedent version, especially
for processing the test data set with novel proteins unseen in the training data.
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1. INTRODUCTION
Plants face the threat of pathogens throughout their lives, and
they have evolved a two-layered immune defense system to
fight against the potential pathogens.1 The first layer is pattern-
triggered immunity (PTI), in which pattern recognition
receptors of plant surface cells can recognize pathogen-
associated molecular patterns and activate the immune
response. Pathogens can secrete effector proteins into plant
cells to interact with host proteins and thus to subvert the PTI
response. In turn, plants evolved resistance proteins (R
proteins) to directly or indirectly recognize effectors and
trigger the second layer of the plant immune system called
effector-triggered immunity (ETI).2 Generally, the interactions
between plant proteins and pathogen effectors are heavily
involved in the ETI process, and the identification of these
protein−protein interactions (PPIs) is important to decipher
the molecular mechanism of plant−pathogen relationships.3

Large-scale experimental identification of Arabidopsis−
pathogen PPIs has generated a considerable amount of PPI
data, including the PPIN-1,4 PPIN-2,5 and EffectorK6 data
sets. To supplement experimental efforts, generic computa-
tional methods such as interolog mapping and domain−
domain interaction-based inference have been widely used to
predict plant−pathogen PPIs.7 On the other hand, the
accumulation of known Arabidopsis−pathogen PPI data
provides a valuable resource for developing machine learning
(ML)-based predictors. In 2019, our team developed

AraPathogen1.0 to predict the interactions between Arabidop-
sis proteins and pathogen effectors, which utilizes Random
Forest (RF) to integrate multiple sequence encoding schemes
and host network features.8 Until now, more than 3,000
queries from ∼40 countries have been processed. Despite the
good achievement of AraPathogen1.0, it often performs poor
on predicting protein pairs containing novel plant or pathogen
proteins unseen in the training data. Therefore, performance
improvement on the prediction of Arabidopsis−pathogen PPIs
is still urgently needed.
In the past years, we have witnessed the rapid development

of natural language processing (NLP). Typically, the word/
document embedding algorithm can convert a word/document
into a semantically rich vector representation through the
training of a corpus, which has been easily adapted to
characterize protein sequences.9 Very recently, protein
language models (PLMs) with unsupervised training were
further investigated to extract features from a large volume of
protein sequences. Interestingly, such pretrained large PLMs
yield protein features containing rich structural and functional
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properties of proteins, and they have been proven to be very
powerful in many protein prediction tasks,10,11 such as
predictions of secondary structure and mutational effects.12

One representative PLM is ESM2, which was trained on ∼65
million protein sequences by using Transformers.10 Also
inspired by NLP, the graph embedding techniques, such as
node2vec13 and struc2vec,14 were proposed to convert nodes
in a biological network into vector representations. By doing
so, the comprehensive topology properties of nodes in the
network are effectively captured. In this context, it is very
natural to evolve AraPathogen1.0 into an upgraded version
(i.e., AraPathogen2.0) by taking advantage of the NLP
technique. In general, AraPathogen2.0 shares the similar
prediction strategy with its predecessor, but it is an extreme
gradient boosting (XGBoost)-based predictor using ESM2 to
extract sequence features and struc2vec to characterize host
network properties.

2. MATERIALS AND METHODS

2.1. Data Set Preparation

We collected 1,387 PPIs between 564 Arabidopsis proteins and
286 pathogen effectors from PPIN-1, PPIN-2, and EffectorK,
which were considered as positive samples. Compared with
AraPathogen1.0, 928 PPIs were newly collected. To construct
negative samples (i.e., non-PPIs), we randomly paired the
noninteracting proteins between nonredundant effectors and
Arabidopsis proteins and further selected 10 times the number
of positive samples as the original negative samples
(Supplemental Table S1). Thus, we obtained an original data
set containing 1,387 PPIs and 13,870 non-PPIs, which cover
8,505 Arabidopsis proteins and 872 pathogen effectors. To
allow for an unbiased model training and assessment, we used
a modified training-test data set partition method proposed by
Park and Marcotte.15 Briefly, we randomly selected 70%
Arabidopsis proteins and 70% pathogen effectors from our
original data set, and all the potential protein pairs in this
subset were further randomly divided into two sets (90%
protein pairs were used to construct one training data set

Figure 1. Data set partition (A), computational framework (B), and performance assessment (C) of the proposed AraPathogen2.0.
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named “training” and 10% protein pairs were used to construct
one test set named “regular test”) (Figure 1a). If protein pairs
in these two data sets were not assigned as positive or negative
samples, they were skipped. The remaining proteins from the
30% Arabidopsis proteins and 30% pathogen effectors were
used to construct another three test sets named “novel host”,
“novel pathogen”, and “novel host and pathogen”. As
illustrated in Figure 1a, the “regular test” means sampling
test data without considering protein existence in the training
data, while “novel host” and “novel pathogen” should not
contain host and pathogen proteins in the training data,
respectively. The “novel host and pathogen” means that both
host and pathogen proteins are unseen in the training data. By
doing so, the ratio of the training set and four individual test
sets is roughly controlled at 44:5:21:21:9 (Figure 1a), and all
the data set partitions were repeated ten times (Supplemental
Table S2).
2.2. Model Architecture and Performance Evaluation

The AraPathogen2.0 model contains three modules (Figure
1b), namely the pretrained ESM2 to infer sequence
embeddings, the pretrained struc2vec to extract host network
features, and the XGBoost classifier. XGBoost is an accurate
and efficient ensemble learning algorithm based on gradient
boosting decision trees, which has been proved to be suitable
for handling high-dimensional data in bioinformatics tasks.
ESM2 consists of 36 encoders, each of which contains a
multihead and a multilayer perceptron, while EsmMean is the
feature vector of the final layer averaged over the protein
length.10 We used EsmMean to encode the sequences of
Arabidopsis proteins and pathogen effectors, which was
implemented using a script provided by the ESM authors
(https://github.com/facebookresearch/esm/). The EsmMean
embedding for a protein has a dimensionality of 2,560, which
allows us to convert a protein pair into a 5,120 dimensional
vector. More details about the EsmMean encoding are
available in Table 1. We collected 42,236 Arabidopsis PPIs
from TAIR (https://www.arabidopsis.org/) and UniProt
(https://www.uniprot.org/), and compiled them into an
Arabidopsis PPI network (i.e., AraNet). The struc2vec
embedding is derived from a pretrained struc2vec model on
the Arabidopsis PPI network, which was implemented using the
GraphEmbedding sof tware (ht tps ://g i thub .com/
shenweichen/GraphEmbedding). In brief, struc2vec first
generates a multilayer graph based on the PPI network, then
produces node paths by walking between or within layers of
the graph, and trains word2vec on these node paths as the
corpus to generate node representation vectors.
To benchmark the proposed AraPathogen2.0, we applied

three other sequence-based encodings [i.e., ProtTrans,11

dipeptide composition (DPC)16 and composition of k-spaced
amino acid pairs (CKSAAP)16,17] and another one network-
based encoding (i.e., node2vec) as the baseline encoding
schemes. Brief descriptions of these baseline encoding schemes
are shown in Table 1. We also employed three other popular
ML methods [i.e., RF, support vector machine (SVM), and
multilayer perceptron (MLP)] as the baseline methods. The
implementation platforms of different ML methods and the
corresponding model parameter and optimization are shown in
Supplemental Tables S3 and S4. T
ab

le
1.

B
ri
ef

D
es
cr
ip
tio

ns
of

D
iff
er
en

t
En

co
di
ng

Sc
he

m
es

En
co
di
ng
s

D
im
en
sio

n
D
es
cr
ip
tio

n

Es
m
M
ea
n

2,
56
0

T
he

Es
m
M
ea
n
en
co
di
ng

is
th
e
ve
ct
or

ou
tp
ut

(L
×
2,
56
0)

of
th
e
fin
al
la
ye
r
(i
.e
.,
th
e
36
th

la
ye
r)

of
ES

M
2
(e
sm

2_
t3
6_

3B
_U

R5
0D

)
av
er
ag
ed

ov
er

th
e
pr
ot
ei
n
le
ng
th

(L
).
T
o
in
fe
r
th
e
Es
m
M
ea
n

en
co
di
ng
,w

e
em

pl
oy
ed

th
e
fe
at
ur
e
ex
tr
ac
t
sc
rip

t
av
ai
la
bl
e
at

(h
ttp

s:/
/g
ith

ub
.co

m
/f
ac
eb
oo
kr
es
ea
rc
h/
es
m
/b
lo
b/
m
ai
n/
sc
rip

ts
/e
xt
ra
ct
.p
y)
.

Pr
ot
T
ra
ns

1,
02
4

Pr
ot
T
ra
ns

us
ed

th
e
U
ni
Re

fa
nd

BF
D

(B
ig
Fa
nt
as
tic

D
at
ab
as
e)

da
ta

se
t
as

th
e
co
rp
us

an
d
em

pl
oy
ed

au
to
re
gr
es
siv
e
an
d
au
to
en
co
de
r
m
od
el
s
to

ge
ne
ra
te

pr
ot
ei
n
re
pr
es
en
ta
tio

ns
.I
n
ou
r
w
or
k,
w
e

do
w
nl
oa
de
d
an

au
to
en
co
de
r
m
od
el
ca
lle
d
Pr
ot
T
5
fro

m
ht
tp
s:/

/g
ith

ub
.co

m
/a
ge
m
ag
ic
ia
n/
Pr
ot
T
ra
ns

an
d
in
st
al
le
d
it
fo
rl
oc
al
us
e.
Fo

r
ea
ch

pr
ot
ei
n,
th
e
Pr
ot
T
5
m
od
el
w
as

us
ed

to
ge
ne
ra
te
a
fin
al

re
pr
es
en
ta
tio

n
of

L
×
1,
02
4,
w
he
re

L
is
th
e
le
ng
th

of
th
e
pr
ot
ei
n.

In
th
is
w
or
k,
th
e
Pr
ot
T
ra
ns

en
co
di
ng

is
a
ve
ct
or

of
th
e
pr
ot
T
5
ou
tp
ut

(L
×
1,
02
4)

av
er
ag
ed

by
le
ng
th
.

st
ru
c2
ve
c

25
6

T
he

gr
ap
h
no
de

em
be
dd
in
g
m
et
ho
d
st
ru
c2
ve
c
ca
n
ex
tr
ac
tb

ot
h
th
e
to
po
lo
gi
ca
la
nd

ne
ig
hb
or

in
fo
rm

at
io
n
of
no
de
si
n
th
e
ne
tw
or
k.
In

th
is
w
or
k,
th
e
st
ru
c2
ve
c
em

be
dd
in
g
is
in
fe
rr
ed

fro
m
a
pr
et
ra
in
ed

m
od
el
on

th
e
Ar
ab
id
op
sis

PP
I
ne
tw
or
k
(i
.e
.,
Ar
aN

et
)
us
in
g
G
ra
ph
Em

be
dd
in
g
im
pl
em

en
ta
tio

n
(h
ttp

s:/
/g
ith

ub
.co

m
/s
he
nw

ei
ch
en
/G

ra
ph
Em

be
dd
in
g)
.

no
de
2v
ec

25
6

T
he

no
de

em
be
dd
in
g
m
et
ho
d
no
de
2v
ec

ca
n
ex
tr
ac
tt
he

no
de

ne
ig
hb
or

in
fo
rm

at
io
n
in

a
ne
tw
or
k.
It
ge
ne
ra
te
s
no
de

pa
th
s
th
ro
ug
h
ra
nd
om

w
al
ks

in
th
e
ne
tw
or
k,
an
d
th
en

th
e
no
de

em
be
dd
in
g
is

ex
tr
ac
te
d
fro

m
th
e
tr
ai
ni
ng

of
w
or
d2
ve
c
w
ith

no
de

pa
th
s
se
rv
in
g
as

a
co
rp
us
.I
n
th
is
w
or
k,
th
e
no
de
2v
ec

te
ch
ni
qu
e
w
as

us
ed

to
re
pr
es
en
tt
he

pr
ot
ei
ns

in
th
e
Ar
ab
id
op
sis

PP
I
ne
tw
or
k,
w
hi
ch

w
as

im
pl
em

en
te
d
th
ro
ug
h
G
ra
ph
Em

be
dd
in
g
(h
ttp

s:/
/g
ith

ub
.co

m
/s
he
nw

ei
ch
en
/G

ra
ph
Em

be
dd
in
g)
.

D
PC

40
0

D
PC

is
a
co
nv
en
tio

na
ls
eq
ue
nc
e
en
co
di
ng

sc
he
m
e,
w
hi
ch

re
pr
es
en
ts
th
e
fre
qu
en
cy

of
di
pe
pt
id
es

in
a
pr
ot
ei
n
se
qu
en
ce
.

C
K
SA

AP
1,
60
0

C
K
SA

AP
re
pr
es
en
ts
th
e
fre
qu
en
cy

of
k-
sp
ac
ed

di
pe
pt
id
e
co
m
bi
na
tio

ns
in

a
pr
ot
ei
n
se
qu
en
ce
.I
n
th
is
w
or
k,
k
=
0,
1,
2,
an
d
3
w
er
e
ta
ke
n
in
to

ac
co
un
t.

Journal of Proteome Research pubs.acs.org/jpr Technical Note

https://doi.org/10.1021/acs.jproteome.3c00364
J. Proteome Res. 2024, 23, 494−499

496

https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00364/suppl_file/pr3c00364_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00364/suppl_file/pr3c00364_si_001.pdf
https://github.com/facebookresearch/esm/
https://www.arabidopsis.org/
https://www.uniprot.org/
https://github.com/shenweichen/GraphEmbedding
https://github.com/shenweichen/GraphEmbedding
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00364/suppl_file/pr3c00364_si_001.pdf
https://github.com/facebookresearch/esm/blob/main/scripts/extract.py
https://github.com/agemagician/ProtTrans
https://github.com/shenweichen/GraphEmbedding
https://github.com/shenweichen/GraphEmbedding
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.3c00364?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


3. RESULTS AND DISCUSSION
We compiled four test sets to comprehensively assess the
performance of AraPathogen2.0. Considering that the positive
and negative samples are highly imbalanced, we plotted the
Precision−Recall curve and mainly used the area under the PR
curve (AUPRC) to characterize the predictive performance. In
addition, we also introduced four common performance
metrics (i.e., Precision, Recall, Specificity, and F1-score) for
method evaluation. As shown in Figure 1c and Table 2,
AraPathogen2.0 achieves excellent performance and the
corresponding AUPRC values in the four test sets are 0.881,
0.763, 0.645 and 0.530, respectively. When benchmarked
against three popular ML algorithms, XGBoost revealed the
best performance in all the four test sets (Table 2). In the
evaluation of different sequence encodings, the EsmMean and
ProtTrans features derived from pretrained PLMs yielded
much higher AUPRC values than the other two conventional
encoding schemes (i.e., DPC and CKSAAP) on the four test
sets (Supplemental Table S5). Comparatively, the performance
of EsmMean is slightly better than that of ProtTrans. Although
the individual features in EsmMean did not contain clear
biologically meaningful information, it is still interesting to
investigate the contributions of different EsmMean features.
Indeed, ∼2,800 out of the 5,120 EsmMean features were
ranked as important features (i.e., the important score inferred
from the XGBoost model >0.0), suggesting different EsmMean
features contribute differently to plant−pathogen PPI
prediction. Indeed, when only top ranking features were used
to train the XGBoost model, the resulting performance in four
different tests is very close to that using all the features
(Supplemental Figure S1). Regarding the network-based
encodings, struc2vec performed better than node2vec,
especially on the “novel host” and “novel host and pathogen”
test sets (Supplemental Table S6), which is probably because
struc2vec incorporates more topological information on nodes
to ensure a better node representation. Altogether, the above
computational experiments confirmed that the XGBoost model
with the feature combination of EsmMean and Struc2vec
achieved the best performance among all the computational
frameworks we tested.
We further compare AraPathogen2.0 with its predecessor

AraPathogen1.0. As shown in Figure 1c and Supplemental
Table S7, AraPathogen2.0 revealed considerable performance

improvement in all the four test sets. To comprehensively
evaluate the performance of the AraPathogen2.0 model, we
also compared it with two state-of-the-art generic PPI
predictors, PIPR18 and D-SCRIPT.19 PIPR integrates the
word2vec embedding and one-hot encoding with a 5-layer
recurrent neural network and achieved excellent performance
in predicting PPIs. D-SCRIPT utilizes a pretrained PLM to
obtain structurally informative embeddings as input and
conducts the PPI prediction through the integration of
bidirectional LSTM and CNN, exhibiting good generalization
performance in cross-species PPI prediction tasks. The results
showed that both AraPathogen2.0 and AraPathogen1.0
considerably outperformed PIPR and D-SCRIPT on the four
test sets (Supplemental Table S7). The more favorable
performance of AraPathogen2.0 over PIPR and D-SCRIPT
should be ascribed to the following two reasons. First,
AraPathogen2.0 has introduced host PPI network information
complementary to sequence information compared to PIPR
and D-SCRIPT. Second, the sequence embedding technique
used in AraPathogen2.0 (i.e., ESM2) is more advanced than
those used in PIPR and D-SCRIPT, since ESM2 adopts a
much larger corpus and a more powerful architecture
(Transformers) for model training. Taken together, the
above computational experiments indicated that AraPath-
ogen2.0 outperforms existing methods in predicting plant−
pathogen PPIs.

4. CONCLUSION
In this work, we developed AraPathogen2.0 for plant−
pathogen PPI prediction. AraPathogen2.0 is an XGBoost-
based predictor trained on a comprehensive Arabidopsis−
pathogen PPI data set. More importantly, it adopted powerful
ESM2 and struc2vec to construct the sequence and network
representations. Rigorous benchmark experiments clearly and
consistently show that we have considerably improved the
prediction performance of plant−pathogen PPIs, especially for
those PPIs with proteins unseen in training data. We anticipate
that AraPathogen2.0 can serve as a useful tool to identify
potential interactions between Arabidopsis proteins and
pathogen effectors, further guiding hypothesis-driven exper-
imental efforts to decipher plant−pathogen relationships.

Table 2. Performance Comparison of Different Machine Learning Methods Based on the EsmMean and struc2vec Encodings

Test set ML Precision Recall Specificity F1 AUPRC

regular test XGBoost 0.921 ± 0.041 0.680 ± 0.041 0.994 ± 0.004 0.781 ± 0.024 0.881 ± 0.015
RF 0.871 ± 0.052 0.501 ± 0.067 0.992 ± 0.004 0.632 ± 0.053 0.769 ± 0.041
SVM 0.713 ± 0.075 0.548 ± 0.061 0.978 ± 0.006 0.619 ± 0.064 0.685 ± 0.076
MLP 0.793 ± 0.094 0.705 ± 0.109 0.979 ± 0.014 0.734 ± 0.060 0.810 ± 0.038

novel host XGBoost 0.881 ± 0.023 0.403 ± 0.040 0.995 ± 0.001 0.552 ± 0.036 0.763 ± 0.025
RF 0.906 ± 0.036 0.199 ± 0.050 0.998 ± 0.001 0.323 ± 0.067 0.703 ± 0.034
SVM 0.765 ± 0.088 0.105 ± 0.036 0.997 ± 0.002 0.182 ± 0.057 0.544 ± 0.065
MLP 0.714 ± 0.079 0.466 ± 0.107 0.980 ± 0.011 0.551 ± 0.068 0.647 ± 0.048

novel pathogen XGBoost 0.798 ± 0.045 0.362 ± 0.038 0.991 ± 0.003 0.497 ± 0.038 0.645 ± 0.039
RF 0.790 ± 0.081 0.301 ± 0.046 0.992 ± 0.004 0.433 ± 0.053 0.593 ± 0.040
SVM 0.665 ± 0.044 0.449 ± 0.028 0.977 ± 0.004 0.536 ± 0.029 0.580 ± 0.035
MLP 0.605 ± 0.045 0.425 ± 0.089 0.971 ± 0.011 0.491 ± 0.054 0.526 ± 0.045

novel host and pathogen XGBoost 0.760 ± 0.072 0.078 ± 0.036 0.997 ± 0.001 0.139 ± 0.058 0.530 ± 0.054
RF 0.864 ± 0.174 0.033 ± 0.018 0.999 ± 0.001 0.063 ± 0.034 0.461 ± 0.063
SVM 0.618 ± 0.288 0.062 ± 0.033 0.997 ± 0.002 0.112 ± 0.059 0.442 ± 0.057
MLP 0.573 ± 0.108 0.259 ± 0.082 0.980 ± 0.009 0.350 ± 0.083 0.425 ± 0.077
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