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Abstract 

Background Alternative splicing (AS) is a co-transcriptional regulatory mechanism of plants in response to environ-
mental stress. However, the role of AS in biotic and abiotic stress responses remains largely unknown. To speed up our 
understanding of plant AS patterns under different stress responses, development of informative and comprehensive 
plant AS databases is highly demanded.

Description In this study, we first collected 3,255 RNA-seq data under biotic and abiotic stresses from two impor-
tant model plants (Arabidopsis and rice). Then, we conducted AS event detection and gene expression analysis, and 
established a user-friendly plant AS database termed PlaASDB. By using representative samples from this highly inte-
grated database resource, we compared AS patterns between Arabidopsis and rice under abiotic and biotic stresses, 
and further investigated the corresponding difference between AS and gene expression. Specifically, we found that 
differentially spliced genes (DSGs) and differentially expressed genes (DEG) share very limited overlapping under all 
kinds of stresses, suggesting that gene expression regulation and AS seemed to play independent roles in response 
to stresses. Compared with gene expression, Arabidopsis and rice were more inclined to have conserved AS patterns 
under stress conditions.

Conclusion PlaASDB is a comprehensive plant-specific AS database that mainly integrates the AS and gene expres-
sion data of Arabidopsis and rice in stress response. Through large-scale comparative analyses, the global landscape 
of AS events in Arabidopsis and rice was observed. We believe that PlaASDB could help researchers understand the 
regulatory mechanisms of AS in plants under stresses more conveniently. PlaASDB is freely accessible at http:// zzdlab. 
com/ PlaAS DB/ ASDB/ index. html.

Keywords Plant, Alternative splicing, RNA-Seq data, Stress response, Arabidopsis, Rice

Background
Plants inevitably encounter different environmental 
stresses during their survival, including abiotic stress 
(e.g., heat stress and drought stress) and biotic stress (e.g., 
infections of viruses, bacteria, fungi, and parasites). Due 
to their sessile lifestyle, plants need to rapidly and accu-
rately adjust their transcriptional regulations, includ-
ing the altered expression levels of transcripts and the 
changes in alternative splicing (AS) patterns, to gener-
ate unique and highly coordinated molecular responses 
under different environmental factors [1–3].

AS is a co-transcriptional regulatory mechanism which 
can regulate the recognition of splice sites, resulting 
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in multiple transcripts for each gene [4, 5]. These tran-
scripts further contribute greatly to the diversity of tran-
scriptome and proteome. On the one hand, AS functions 
primarily by producing two or more protein isoforms, 
which may perform completely different functions in cer-
tain situations [6]. On the other hand, AS can also lead to 
the functional loss of genes, as it can result in premature 
termination codons (PTCs) and yield the production of 
truncated protein isoforms [7]. PTCs caused by AS may 
further trigger nonsense-mediated decay (NMD), lead-
ing to cytoplasmic RNA degradation [8, 9]. AS events 
contain four major types, including intron retention (IR), 
exon skipping (ES), alternative 5’ splice sites (A5SS) and 
alternative 3’ splice sites (A3SS) [10]. IR is the most com-
monly occurred AS events in plants, which is different 
from animals.

With the development of sequencing technology, the 
detection of AS events from RNA-Seq data has become 
more mature, and a large amount of data associated with 
AS have been accumulated in public databases. There are 
several AS-specific databases for plants, such as CuAS 
[11], PASTDB [7], and TeaAS [12], which are playing 
increasingly important roles in accelerating our under-
standing of AS patterns in these plant species. However, 
most of these databases focus on only one individual spe-
cies. In general, global and systematic comparison of AS 
events in plants is still lacking, largely due to the absence 
of highly integrated data resource. Meanwhile, there are 
more and more AS studies on plants, but most still focus 
on single genes or the whole transcriptome in response 
to specific environmental conditions [13]. Therefore, it is 
necessary to jointly investigate the AS events of different 
species under diverse stresses through the construction 
of more comprehensive AS databases and the large-scale 
analysis of AS events. In the past decades, RNA-Seq 
data in Arabidopsis thaliana (Arabidopsis) and Oryza 
sativa (rice) have been accumulated rapidly as they are 
two of the most important model plants. Although spe-
cific databases designed to manage the RNA-Seq data 
of these two plants have been available, the detection of 
AS events from the RNA-Seq data are often overlooked. 
For instance, there is currently an Arabidopsis RNA-Seq 
database called ARS, which contains about 20,000 sam-
ples in Arabidopsis, but it does not target the AS events 
[14].

In this study, a large number of RNA-Seq data of 
Arabidopsis and rice were collected to investigate their 
AS patterns under biotic and abiotic stresses in detail. 
We pre-calculated and integrated AS events and gene 
expression patterns under different stress conditions as 
well as the related genomic characteristics into a com-
prehensive plant-specific AS database termed PlaASDB. 
We also compared AS patterns between Arabidopsis and 

rice under stresses with the data from PlaASDB. Through 
these large-scale comparisons, the global landscape of 
AS events in Arabidopsis and rice was observed, the dif-
ferential splicing and differential expression of genes 
induced by different stresses were compared, and the 
possible functions and mechanisms caused by the AS 
changes were also discussed.

Results and discussion
Database construction
We collected 2,703 RNA-Seq data sets of Arabidopsis, 
including 2,280 abiotic and 423 biotic stress samples, and 
552 RNA-Seq data sets of rice, including 410 abiotic and 
142 biotic stress samples (see Table S1 for more details). 
We processed these RNA-Seq data uniformly and con-
structed an AS-specific database termed PlaASDB. The 
workflow of PlaASDB construction is shown in Fig.  1. 
We used ASTool [15], an exon-based AS detection tool 
developed by our team, to identify four major AS events 
(IR, ES, A5SS, and A3SS) in different samples.

The PlaASDB database mainly deposits the AS infor-
mation of Arabidopsis and rice genes in response to 
multiple abiotic and biotic stresses, and other basic tran-
scriptome information is also integrated. As shown in 
Fig. 2, we show the usage of PlaASDB through the query 
results of an Arabidopsis gene named ARV1 (gene ID: 
AT1G01020). As a protein-coding gene, it is often active 
in the golgi apparatus and cortical endoplasmic reticu-
lum, and plays an important role in the metabolic pro-
cesses of sphingolipids and sterols. This gene contains 
six different transcripts. PlaASDB provides a retrieval 
system enabling users to search by gene ID (AT1G01020) 
or name (ARV1). It should be noticed that there are two 
kinds of rice gene IDs, RGAP and RAP-DB. Users can 
choose any type of them to complete the query without 
the need for ID conversion. After searching, PlaASDB 
first provided basic information about the target gene, 
including the types of AS events that the gene may be 
involved in under different stress conditions (Fig.  2A). 
At the same time, users can visualize the target gene in 
the built-in gene browser, in which users can also query 
according to their demands. For example, users can fur-
ther click on each transcript to view the relevant infor-
mation (Fig.  2B). The PlaASDB database then provides 
detailed information of all AS events, including the 
type, length, location, and the average percent-splice-
in (PSI) value. Users can select the specific stress type 
they are interested in and visualize the correspond-
ing PSI range of AS events in the target gene (Fig.  2C). 
Users can obtain the information on transcripts, CDS, 
and isoform sequences directly from the resulting page 
(Fig. 2D). For different isoforms, the Pfam domain anno-
tations are also listed (Fig.  2E). The expression levels of 
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genes and transcripts under different stress types were 
also available (Fig.  2F). Finally, we calculated the Pear-
son correlation coefficients (PCCs) between the gene 
expression profiles of the target gene and other genes, 
and inferred the co-expressed gene partners of the tar-
get gene according to the ranking of PCCs. Either in abi-
otic or biotic stress, the top 50 co-expressed genes of the 
target gene are displayed. To help users understand the 
potential functionality of the target gene, PlaASDB also 
provides short descriptions of the co-expressed genes 
and the corresponding links to other databases. Further 
using AT1G01020 as an example, its two co-expression 
networks under abiotic and biotic stresses are visualized 
in Fig. S1. Altogether, PlaASDB can provide some new 
clues to interrogate the functional roles of the query gene 
in abiotic and biotic stresses by taking the AS events and 
the co-expression partners simultaneously into account.

Identification and analysis of gene isoforms
Gene isoforms are multiple copies of mRNAs from one 
gene but differ in transcription products, potentially 
altering gene function. Representative RNA-Seq data 
of Arabidopsis and rice under different biotic and abi-
otic stress types were selected from PlaASDB for further 
analysis, including 57 Arabidopsis and 63 rice samples, 
respectively (see Table S2 for more details). In addition, 

these samples were collected from multiple tissues of 
Arabidopsis and rice, such as roots, leaves, and seeds 
(Table S2). A total of 54,013 isoforms were identified in 
Arabidopsis and 66,338 isoforms in rice, respectively. 
Results suggested that low-abundant transcripts (i.e., 
transcripts per million reads (TPM) < 1) occupied the 
largest proportion in Arabidopsis and rice (Fig. 3). Most 
of the low-abundant transcripts cannot be successfully 
translated into proteins [16, 17]. This may explain why 
the number of proteins is much smaller than the number 
of transcripts. At the same time, for Arabidopsis and rice, 
the major isoforms (e.g., the top 1 and 2 isoforms) con-
tribute the majority of the gene expression abundance, 
while the remaining isoforms cover a small proportion 
of the gene expression abundance. The results indicated 
that the top 1 and top 2 isoforms often play a dominant 
role in gene function.

Characterization of global AS events in Arabidopsis and rice
We further investigated the AS patterns in Arabidop-
sis and rice under stress with the selected 120 RNA-Seq 
samples. A total of 9,052 and 16,680 AS events were iden-
tified in Arabidopsis and rice, respectively. As shown in 
Fig.  4A, IR was the dominant AS event in Arabidopsis 
and rice, followed by A3SS, A5SS, and ES. The propor-
tion of A3SS events is much higher than that of A5SS 

Fig. 1 The work flow of PlaASDB. The stress-related RNA-Seq data of Arabidopsis and rice were collected and processed with a standardized 
pipeline. Then, the expression values of genes and transcripts were calculated, and AS events were identified uniformly by using ASTool. In addition, 
co-expression networks of genes were constructed, and the related annotation information was also collected
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Fig. 2 A brief introduction of PlaASDB through an example (gene ID: AT1G01020). A Basic information about the example. B Database built-in gene 
browser. C PSI range of AS events under 1-aminocyclopropane-1-carboxylic acid (ACC) stress. D The basic information of the transcript sequence. E 
Information of domains detected from transcripts. F The average transcripts per million reads (TPM) values of the transcripts in each stress type. For 
each stress type, we removed the control samples, calculated the TPM values of the transcripts from multiple experiments using StringTie (v2.1.4), 
and then obtained the average TPM value as the expression level of each transcript
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Fig. 3 Transcript abundance of Arabidopsis (A) and rice (B) under different stress conditions

Fig. 4 Alternative splicing (AS) events in Arabidopsis and rice under stress. A The proportion of four types of AS events in Arabidopsis and rice. B 
The GC content of the retained introns and the skipped exons in Arabidopsis and rice are compared. C Length distribution of genome-wide introns, 
exons, and four major kinds of AS events in Arabidopsis and rice (*** means P-value <0.01, * means P-value <0.05). All lengths were divided by the 
average length of the corresponding introns/exons in the whole genome for standardization. D Distribution in  ASXi types and their frequency in 
Arabidopsis (left) and rice (right).  ASXi stands for the remainder of the length of an intron or exon divided by 3.  Xi ∈ {0,1,2}
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events, which is consistent with previous reports [4, 18, 
19]. Interestingly, we found a higher percentage of IR in 
Arabidopsis than in rice, while the proportion of A3SS 
in rice was higher than in Arabidopsis (Fig. 4A, Fig. S2). 
Regarding the proportions of AS events detected under 
stress and control conditions, no significant difference 
was observed.

We also compared the GC content of locus detected 
with AS events, including retained introns (PSI ≥ 0.1) and 
skipped exons (PSI ≤ 0.9), with locus without AS events 
(Fig. 4B). GC content calculation of A5SS and A3SS was 
not conducted because the sequence lengths are too 
short. The GC content of retained introns was signifi-
cantly higher than other introns in Arabidopsis and rice 
(two-tailed Wilcox-test, P-value < 0.001). Meanwhile, 
the GC content of skipped exons was significantly lower 
than that of constituent exons (two-tailed Wilcox-test, 
P-value < 0.001). Therefore, when the GC content is low 
in exons, exon skipping events are more likely to occur. 
On the contrary, when the GC content is high in introns, 
it is more likely to retain these introns in mature tran-
scripts. These indicated that GC content could be a vital 
feature in differentiating AS events [20, 21].

We further analyzed the length distribution of AS 
events. In Arabidopsis and rice, the length distribution 
patterns of the four AS events are approximately the 
same. The average lengths of IR, ES, A5SS, and A3SS 
events are about 190  bp, 110  bp, 150  bp, and 70  bp in 
Arabidopsis, and 300  bp, 150  bp, 120  bp, and 70  bp in 
rice, respectively. We then compared the length of the 
four AS events and genome-wide introns and exons in 
Arabidopsis and rice (Fig. 4C), and found significant dif-
ferences (two-tailed Wilcox test, P-value < 0.001) in four 
AS events, which may also be related to the evolution 
of rice genome. We further investigated the effect of the 
length of AS events on the reading frame and found that 
Arabidopsis and rice are inclined to keep the reading 
frame when faced with evolutionary pressure (Fig. 4D).

Identification and functional analysis of DSGs and DEGs 
under biotic and abiotic stresses
We first calculated the PSI values of AS events using 
ASTool [15]. Then, we identified differential AS events 
under biotic and abiotic stresses with the following two 
criteria: (1) |ΔPSI|≥ 0.1, and (2) P-value based on two-
tailed Wilcox-test < 0.1. We defined an AS event with 
changed PSI under stress as an up-regulated or down-
regulated one. We first compared the number of differ-
ential AS events of Arabidopsis and rice under different 
stresses (Fig.  5A). For Arabidopsis, we detected more 
differential AS events under abiotic stresses than biotic 
stresses. The overall fluctuation of differential AS events 
under abiotic stress was large. Except for ABA and 

osmotic stress, the up-regulated differential AS events 
were far more than the down-regulated differential AS 
events. However, the number of differential AS events 
for rice was more under biotic stresses than that under 
abiotic stresses. Results indicated more down-regulated 
differential AS events under abiotic stresses, such as 
drought and heat (Fig. 5A). In particular, the number of 
up-regulated differential AS events was more than twice 
the down-regulated ones in rice infected by Planthop-
per. We further investigated each type of differential AS 
events under both abiotic and biotic stresses (Fig.  5B). 
It was found that some differential AS events occurred 
simultaneously under abiotic and biotic stresses in both 
Arabidopsis and rice. We assumed that these events con-
servatively regulate plants through AS mechanisms to 
better adjust to the environment.

We then referred to genes containing differentially 
spliced AS events as DSGs. We also identified differen-
tially expressed genes (DEGs) under stresses with the R 
package DESeq2 [22] to compare the difference between 
DSGs. As a result, we identified 1,435 DSGs under biotic 
stress and 4,184 DSGs under abiotic stress in Arabi-
dopsis. Similarly, we identified 4,815 DSGs under biotic 
stress and 2,683 DSGs under abiotic stress in rice. For 
DEGs, 4,704 DEGs and 12,061 DEGs were identified 
under biotic and abiotic stresses in Arabidopsis, 11,403 
DEGs under biotic stress and 17,439 DEGs under abi-
otic stress were identified in rice, separately (Table S3). In 
contrast, under each stress, there were only limited DSGs 
also detected as DEGs in both Arabidopsis (Fig. 5C) and 
rice (Fig. S3), indicating that gene expression regulation 
and AS seemed to play independent roles in response to 
stresses [7].

In order to have a better understanding of the functions 
of DSGs and DEGs, we conducted gene ontology (GO) 
enrichment analysis (Tables S4 and S5) [23]. In Arabidop-
sis and rice, DSGs are enriched in many of the same GO 
terms. For example, in the category of biological process, 
we noticed that several broad GO terms were commonly 
enriched among DSGs in Arabidopsis and rice under abi-
otic and biotic stresses, such as regulation of cellular pro-
cess and regulation of biological process. Regarding the 
category of molecular function, GO terms were mainly 
concentrated on binding-related terms, such as nucleo-
tide binding and ATP binding. These results are consist-
ent with previous studies of plant AS events in response 
to some specific stresses [24].

For DEGs in response to biotic stress, GO terms 
responding to stresses were significantly enriched in 
both Arabidopsis and rice, including response to stress, 
response to abiotic stimulus, cellular response to stimu-
lus, and response to oxidative stress. However, we found 
the number of commonly enriched terms in DEGs was 
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far less than in DSGs when under abiotic stresses (Tables 
S4 and S5), indicating DSGs might potentially play more 
conservative roles in plants. In molecular function, the 
terms related to binding-related function were also 
enriched as shown in DSGs (Tables S4 and S5).

Differences in biological processes between DSGs and 
DEGs indicated that AS might play an important role in 
the stress response by affecting gene groups other than 
conventional DEGs [19, 25]. For example, the REGU-
LATOR OF CBF EXPRESSION1 (RCF1, AT1G20920) 
encodes an RNA helicase required for cold tolerance 
[26]. According to the annotation of this gene in Pla-
ASDB, RCF1 contains mRNA splicing and RNA helicase 

activity-related GO terms. Moreover, it contains seven 
transcripts and undergoes IR, ES, A5SS and A3SS events 
under cold stress. Interestingly, previous experimen-
tal evidence indicates that AS of the introns in the 3′ 
untranslated region (UTR) may lead to the retention of 
a specific isoform in the nucleus or trigger NMD to regu-
late RCF1 expression at different temperatures [27]. At 
the same time, both DSGs and DEGs play a central func-
tional role in transcriptional regulatory networks and are 
potentially pleiotropic [28]. We also found many specific 
enriched GO terms in each plant under abiotic or biotic 
stresses, enabling further investigation into the functions 
of these DSGs or DEGs.
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Conclusions
As a universal transcriptional regulatory mechanism, AS 
plays an important role when plants cope with environ-
mental stress. The application of RNA-Seq technology 
continuously promotes the development of plant tran-
scriptomics in recent years, and researchers could obtain 
more AS information through the analysis of transcripts. 
PlaASDB is a freely available public resource that pro-
vides extensive details of AS events by analyzing RNA-
Seq data of two important model plants (Arabidopsis and 
rice) under biotic and abiotic stresses. The established 
PlaASDB also allowed us to obtain the global landscape 
of AS events between Arabidopsis and rice under biotic 
and abiotic stresses. Moreover, the DSGs and DEGs 
of these two plants in response to different stress types 
were also systematically investigated. Taken together, we 
hope that PlaASDB will become an important resource to 
investigate AS patterns in plants under different stresses 
and thus provides new hints to accelerate the functional 
genomics studies of plants.

Methods
Data collection and process
We collected stress-related RNA-Seq metadata of Arabi-
dopsis thaliana (Arabidopsis) and Oryza sativa(rice) 
from Gene Expression Omnibus (GEO) database [29] 
and downloaded the corresponding raw data from NCBI 
Sequence Read Archive (SRA) database [30]. In total, we 
obtained an RNA-Seq dataset consisting of 3,255 samples 
from Arabidopsis and rice (Table 1 and Table S1). After 
quality control of raw data through Trimmomatic (v0.39) 
[31], we used Hisat2 [32] to align reads to the reference 
genome with default parameters. Then, the SAM file 
from Hisat2 was converted to a BAM file using Samtools 
(v1.11) [33]. Moreover, the transcripts were assembled 
according to reference genomes, and the correspond-
ing expression levels (i.e., TPM values) were calculated 
by using StringTie (v2.1.4) [34]. Finally, ASTool [15] was 
used to identify AS events for each sample through the 
calculation of the corresponding PSI values.

We have classified these samples according to stress 
conditions, and detailed information on these RNA-Seq 
data is summarized in Table S1. We further selected rep-
resentative samples of Arabidopsis and rice under several 

abiotic and biotic stress conditions from the compiled 
database for subsequent analysis of AS events (Table 
S2). To avoid the influence of ecotypes and mutants, 
representative samples should be Col-0 wild-type. Addi-
tionally, three biological repeats were required in most 
representative samples.

Gene information collection and functional annotation
We downloaded gene information, transcripts, and pro-
tein sequences of Arabidopsis from TAIR (https:// www. 
arabi dopsis. org/) [35]. We also collected the correspond-
ing information on rice from RAP-DB (https:// rapdb. dna. 
affrc. go. jp/) [36]. GO annotations of Arabidopsis and rice 
were downloaded from the GO database (http:// geneo 
ntolo gy. org/) [23]. We used HMMER (v3.3.2) [37] to 
search for domains in each transcript in the Pfam data-
base with an E-value threshold of 1E-5.

Co‑expression network construction
Conditional-specific gene co-expression networks were 
constructed for each project. Only the projects contain-
ing at least 12 samples were considered. For each project, 
we calculated the value of PCC between any two genes 
[38]. To construct the co-expression networks of a gene, 
the top 50 co-expressed gene partners for this gene were 
selected. Finally, all the top 50 co-expressed gene part-
ners of this gene from different projects were integrated 
to obtain the co-expression networks of this gene under 
biotic stress and abiotic stress. In the co-expression net-
work under biotic or abiotic stress, note that only the top 
50 co-expressed genes after ranking were considered.

Identification of DSGs and DEGs
We used ASTool to calculate the PSI value for each 
AS event. The change of PSI value (∆PSI) was used to 
measure the degree of difference in retained intron and 
skipped exon. We calculated the ∆PSI values by evaluat-
ing the difference between the average PSI values of the 
treated and control samples. In addition, P-value was 
used to measure the significance of the difference in ∆PSI 
values with a nonparametric Wilcoxon rank sum test. 
Differential AS events were defined with the following 
thresholds: |ΔPSI|≥ 0.1 and P-value ≤ 0.1. Genes contain-
ing differential AS events were defined as DSGs. We also 
identified DEGs under different kinds of stresses with the 
R package “DESeq2” [22]. Genes with |log2FC|≥ 1 and 
adjusted P-value < 0.05 were considered as DEGs.

Gene ontology enrichment analysis
Gene functions of DSGs and DEGs were annotated 
according to the GO database [23]. GO enrichment anal-
ysis was performed by agriGO (v2.0) [39]. Enriched GO 

Table 1 Brief information of collected samples in PlaASDB

Species Stress types No. of projects No. of samples

Arabidopsis Abiotic 107 2280

Biotic 18 423

Rice Abiotic 32 410

Biotic 16 142

https://www.arabidopsis.org/
https://www.arabidopsis.org/
https://rapdb.dna.affrc.go.jp/
https://rapdb.dna.affrc.go.jp/
http://geneontology.org/
http://geneontology.org/
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terms with adjusted P-value < 0.05 were selected for fur-
ther comparison.

Database construction
The PlaASDB website was built based on CentOS 7.4, 
Apache 2.4.6, MySQL 15.1, and PHP 5.4.16. JavaScript 
was used for document manipulating, data visualization, 
and the built-in gene browser. The tables and charts in 
PlaASDB were mainly produced based on several web-
based JavaScript libraries, such as DataTables.js and 
echarts.js.
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