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SUMMARY

Currently, the experimentally identified interactome of Arabidopsis (Arabidopsis thaliana) is still far from

complete, suggesting that computational prediction methods can complement experimental techniques.

Motivated by the prosperity and success of deep learning algorithms and natural language processing tech-

niques, we introduce an integrative deep learning framework, DeepAraPPI, allowing us to predict protein–
protein interactions (PPIs) of Arabidopsis utilizing sequence, domain and Gene Ontology (GO) information.

Our current DeepAraPPI comprises: (i) a word2vec encoding-based Siamese recurrent convolutional neural

network (RCNN) model; (ii) a Domain2vec encoding-based multiple-layer perceptron (MLP) model; and (iii) a

GO2vec encoding-based MLP model. Finally, DeepAraPPI combines the prediction results of the three indi-

vidual predictors through a logistic regression model. Compiling high-quality positive and negative training

and test samples by applying strict filtering strategies, DeepAraPPI shows superior performance compared

with existing state-of-the-art Arabidopsis PPI prediction methods. DeepAraPPI also provides better cross-

species predictive ability in rice (Oryza sativa) than traditional machine learning methods, although the

overall performance in cross-species prediction remains to be improved. DeepAraPPI is freely accessible at

http://zzdlab.com/deeparappi/. In the meantime, we have also made the source code and data sets of Dee-

pAraPPI available at https://github.com/zjy1125/DeepAraPPI.

Keywords: Arabidopsis thaliana, protein–protein interaction, deep learning, prediction, GO annotation,

domain.

INTRODUCTION

Proteins are indispensable macromolecules in living organ-

isms that act in concert with each other through physical

interactions. In particular, many basic cellular processes,

such as cellular metabolism, transport and regulation,

depend on protein–protein interactions (PPIs) (Berggard

et al., 2007; Keskin et al., 2016), indicating that the

proteome-wide identification of PPIs is of great signifi-

cance for our systematic understanding of cellular

functions. Furthermore, PPIs also play a crucial role in the

identification of therapeutic targets and the design of novel

drugs (Petta et al., 2016; Shin et al., 2017; Skrabanek

et al., 2008).

To reliably measure PPIs, many experimental tech-

niques have been developed and are classified as low- and

high-throughput detection methods (Gul & Hadian, 2014;

Lian et al., 2021; Peng et al., 2017; Petschnigg et al., 2011).

Low-throughput methods include X-ray crystallography,
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surface plasmon resonance (SPR) and pull-down assay,

whereas high-throughput methods use yeast two-hybrid

(Y2H), affinity purification coupled with mass spectrometry

(AP-MS) and protein microarrays. In general, these experi-

mental methods are time-consuming, laborious and costly,

and have their own advantages and limitations. For

instance, high-throughput methods can identify PPIs on a

large scale but suffer from high false-positive rates.

As Arabidopsis is an important model plant, knowl-

edge of comprehensive PPI networks is necessary to

understand molecular mechanisms such as organ forma-

tion, signal transduction and stress response (Lin

et al., 2009). Although roughly 300 000 PPIs are estimated

to exist in Arabidopsis (Arabidopsis Interactome Mapping

Consortium, 2011), the coverage of experimentally verified

interactions is rather limited (Ding & Kihara, 2019). Cur-

rently, a variety of computational methods have been

applied to predict PPIs in Arabidopsis, including interolog

mapping (Geisler-Lee et al., 2007), structure-based

methods (e.g. molecular docking; Dong et al., 2019), inte-

grative methods of multiple features (Cui et al., 2008; De

Bodt et al., 2009; Xu et al., 2010) and machine learning-

based approaches, such as random forest (RF) (Zhang

et al., 2016) and support vector machines (SVM) (Ding &

Kihara, 2019). As different methods have their own

strengths and weaknesses, interolog mapping is limited in

its prediction abilities to known interactions in other spe-

cies, whereas structure-based methods are restricted by

the need to obtain highly accurate structural information.

As for deep learning methods to predict PPIs, Sun

et al. introduced stacked autoencoder (SAE) to develop a

sequence-based human PPI predictor (Sun et al., 2017). Du

et al. proposed DeepPPI, which uses deep neural networks

to efficiently learn the representation of protein pairs to

predict PPIs (Du et al., 2017). Hashemifar et al. introduced

DPPI, a Siamese-like convolutional neural network (CNN),

to extract features from sequences, capturing complex and

nonlinear relationships in PPIs (Hashemifar et al., 2018).

Chen et al. proposed PIPR, an end-to-end framework to

predict PPIs based only on sequence information, utilizing

robust local features and contextualized information within

protein sequences (Chen et al., 2019). Furthermore, natural

language processing (NLP) methods have also been

applied, as protein sequences are represented as a string

of amino acids. For example, Wu et al. divided each pep-

tide sequence into k-mers using a sliding window, embed-

ded proteins through vectors of such k-mers using

word2vec and applied a deep learning model to predict

therapeutic peptides (Wu et al., 2019). Yang, Yang, Li,

et al. (2020) converted protein sequences into fixed dimen-

sional feature vectors through doc2vec, an unsupervised

sequence embedding technique, to predict human-virus

PPIs with an RF model (Yang, Yang, Li, et al., 2020). Zeng

et al. (2019) developed DeepEP to identify essential

proteins based on a convolutional neural network frame-

work that uses the node2vec technique to automatically

learn the topological and semantic features of each protein

in the PPI network. Pan et al. introduced a deep learning-

based method, termed ToxDL, for predicting protein toxic-

ity. Its framework consists of two modules, including a

Skip-gram model (i.e. Domain2vec) to find protein domain

embeddings and a CNN to process input sequences (Pan

et al., 2021). Zhong et al. proposed GO2vec to learn about

the feature embedding of Gene Onotolgy (GO) terms and

applied the node2vec model on an established GO graph.

As a result, each node in the GO graph was represented by

a fixed-dimensional feature vector (Zhong et al., 2019).

Recently, deep learning algorithms have also been

applied to predict plant-specific PPIs. In particular, Pan

et al. proposed DWPPI, integrating sequence features and

PPI network embedding as the input of deep neural net-

works to predict the PPIs of Arabidopsis, Oryza sativa (rice)

and Zea mays (maize) (Pan et al., 2022). Although experi-

mentally determined plant PPI data have been significantly

accumulating in recent years, providing a good foundation

for developing deep learning predictive models, source

codes or webservers of existing deep learning-based plant

PPI prediction methods are rarely available to the

community.

To further develop deep learning-based plant PPI pre-

dictors, we constructed an integrative deep learning frame-

work, DeepAraPPI, to predict Arabidopsis PPIs by using

sequence, domain and GO information (Figure 1a). In par-

ticular, DeepAraPPI is based on three predictors, where: (i)

sequence information between interacting proteins is cap-

tured through a word2vec encoding-based Siamese recur-

rent convolutional neural network (RCNN) model

(Figure 1b); (ii) DeepAraPPI uses Domain2vec to provide

domain embeddings of protein pairs as the input to a

multiple-layer perceptron (MLP) to predict protein interac-

tions (Figure 1c); and (iii) to capture functional information,

DeepAraPPI embeds protein pairs by using GO2vec encod-

ings and predicts PPIs through an MLP. To integrate the

power of these predictors, DeepAraPPI employs a logistic

regression (LR) model to obtain a comprehensive predic-

tion score, allowing us to show that the integrative LR

model performed better than any single predictor. In com-

parison with existing state-of-the-art Arabidopsis PPI pre-

diction methods, DeepAraPPI provides superior

performance.

RESULTS AND DISCUSSION

Overall performance of DeepAraPPI

To train and assess the performance of our proposed Dee-

pAraPPI model, we collected high-quality experimental

Arabidopsis PPIs as positive samples. Furthermore, we

sampled negative training data by randomly selecting
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Arabidopsis protein pairs that do not co-occur in the same

subcellular compartment. Moreover, the ratio of positive to

negative samples was set as 1:10. Considering that the per-

formance of PPI prediction is strongly linked to the bench-

marking data sets, we designed three tasks through data-

set partition (i.e. Task1, Task2 and Task3, corresponding to

low, medium and high difficulty level, respectively) to rig-

orously test the prediction performance of our model. To

quantify performance, we utilize commonly used measure-

ments such as TPR (true-positive rate, also called recall),

FPR (false-positive rate) and precision. To achieve a more

comprehensive performance assessment, we plotted the

precision–recall (PR) curve and quantified the performance

through the corresponding area under the PR curve

(AUPRC), which is commonly used to evaluate classifica-

tion performance when positive and negative samples are

imbalanced. Further details about the preparation of the

data set and the methodology of DeepAraPPI are available

in the Experimental procedures.

Assessing the model performance of DeepAraPPI

using benchmarking data sets at three different difficulty

levels, Table 1 summarizes the AUPRC of RCNN, Domain2-

vec, GO2vec and the integrated LR model on independent

test sets. In particular, we observed that with increasing

prediction difficulty, the performance of all single models

decreased, indicating that prediction accuracy suffers when

facing unknown proteins. Comparing all three individual

prediction models, GO2vec uniformly performs best, sug-

gesting that our GO2vec model captures functional similar-

ity between interacting proteins effectively. Although

RCNN shows sensitivity to increasing prediction difficulty,

Domain2vec demonstrates robust performance in all pre-

diction tasks, suggesting that Domain2vec effectively inte-

grates domain information to infer PPIs. Notably, the

integrated LR model performed better than any individual

model, indicating that the integrative strategy is generally

effective. The prediction ability of RCNN in dealing with

unknown proteins suffers, as evinced by low AUPRC

values in Task2 and Task3, suggesting that sequence infor-

mation is more sensitive to PPI predictions than GO or

domain information.

Model interpretability of DeepAraPPI

We conducted computational experiments to investigate

the model interpretability of DeepAraPPI. Out of the three

baseline models in DeepAraPPI, RCNN captures raw

Figure 1. Overview of the computational framework of DeepAraPPI. (a) DeepAraPPI integrates sequence, domain and Gene Ontotlogy (GO) information to pre-

dict protein–protein interactions (PPIs) in Arabidopsis. Three baseline models (i.e. RCNN, Domain2vec and GO2vec) are separately trained to obtain the corre-

sponding predictive scores (i.e. SRCNN, SDomain2vec and SGO2vec) that are combined into a vector to train a logistic regression model as our final predictive model.

(b) The overall architecture of our Siamese RCNN predictor. (c) Graphic illustration of Domain2vec on the network graph formed by the DDIs and domain anno-

tations of proteins. Briefly, node2vec first generates sequences of node paths by biased random walks, which are further inputted to the SkipGram model of

word2vec to obtain the feature vector of each node. di labels a domain and Ni denotes its k-dimensional vector, where nij is the j-th element of ni. Furthermore,

pm labels a protein and Vm denotes its k-dimensional vector, where vmn is the n-th element of vm.
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sequence data through multiple hidden layers to improve

classification performance. Using the high-dimensional

feature visualization technique, t-distributed stochastic

neighbor embedding (t-SNE), we visualize raw features

and sequence pair vectors obtained by multiplying the pair

of protein-embedding vectors after convolution. Initially

raw data are disorderly distributed (Figure 2a), but positive

and negative samples are clearly separated after RCNN

processing (Figure 2b), indicating that the RCNN model

has effectively learned the features to distinguish whether

protein pairs interact.

We further explained the RCNN model based on

gradient-weighted class activation mapping (Grad-CAM)

(Selvaraju et al., 2020). Grad-CAM utilizes the gradients

flowing into the convolutional layer to calculate different

weights for each neuron without changing the architecture

or retraining, pointing to the region of the sequence that

ultimately helps the model to make decisions. Here, we

used an interacting protein pair (i.e. P56761–P83755) with

experimentally verified three-dimensional (3D) structure to

further exemplify the interpretability of the model. We

used the Grad-CAM technology to calculate the class-

discriminative localization maps of two proteins. As a

result, a class-discriminative localization value was

obtained for each residue in these two proteins. The larger

the value, the greater the influence of the underlying resi-

due on the model decision. As annotated by PlaPPISite

(Yang, Yang, Qi, et al., 2020), we found that 80 out of the

353 residues in protein P56761 are involved in binding to

protein P83755. In turn, 28 out of the top 80 residues that

we located in the class-discriminative localization map of

P56761 significantly overlapped with the protein-interacting

residues (Fisher’s exact test, P = 0.0017). Whereas protein

P83755 has 81 interacting residues over a total of 353 resi-

dues, we found 21 overlapping residues in its class-

discriminative localization map (Fisher’s exact test,

P = 0.090). Presenting the observed overlap between the res-

idues with top class-discriminative localization values and

interacting residues in these two proteins through a surface

representation of the 3D structure of the interacting proteins

(Figure 2c,d), our example clearly suggests that the RCNN

model can effectively capture sequence regions that affect

protein interactions to implement its classification task.

As the GO2vec model has the best overall perfor-

mance among the three predictors, we further explain the

GO2vec model. Using the R package GOSemSim (Csardi &

Nepusz, 2006), we calculated the GO similarity between

two interacting proteins in the independent test set of

Task1. Moreover, we obtained fixed dimensional vectors

for each protein using the GO2vec model, and further

determined the similarity of two interacting proteins using

cosine similarity. Notably, we observed a significant corre-

lation between the protein similarity yielded by the GO2vec

model and the GO similarity (Figure 2e; R2 = 0.6023,

P = 4.3 × 10−21), indicating that the GO2vec endowed each

protein with rich semantic information.

Comparison with other methods

As RF classifiers often outperform other conventional

machine learning methods, we compared the performance

of our deep learning method with RF-based approaches

(Chen et al., 2019; Wu et al., 2009; Yang, Yang, Li,

et al., 2020). In particular, we used three baseline encoding

schemes, auto covariance (AC), conjoint triad (CT) and

dipeptide composition (DPC), to represent interacting pairs

of proteins. PR curves of the three test tasks clearly indi-

cate that DeepAraPPI outperforms any RF-based methods

(Figure 3a–c).
We further compared the performance of our DeepAr-

aPPI platform with three existing Arabidopsis PPI predic-

tion methods, including AraPPINet (https://netbio.sjtu.edu.

cn/arappinet) (Zhang et al., 2016), AtPIN (https://atpin.

bioinfoguy.net/cgi-bin/atpin.pl) (Brandao et al., 2009) and

AtPID (http://119.3.41.228/atpid/webfile) (Li et al., 2011).

AraPPINet utilized 3D structure and function information to

generate four structural features and seven non-structural

features to predict Arabidopsis PPIs based on an RF model

(Zhang et al., 2016). AtPIN is a user-friendly resource that

aggregates Arabidopsis PPIs, ontology and subcellular

localization information and provides Arabidopsis PPI pre-

dictions through an interolog mapping method (Brandao

et al., 2009). AtPID uses a variety of computational

methods to predict PPIs, including interolog mapping,

gene expression data, genomic context, gene fusion, phy-

logenetic profiles and GO annotation. Finally, these predic-

tion data sources are integrated via a Bayesian network

method (Li et al., 2011).

As these three existing predictors were published

before 2018, we repartitioned the 11 858 high-quality PPIs

into two subsets, where we used 8997 PPIs published

before 2018 as the positive samples for the training set and

2861 PPIs published after 2018 as the positive samples for

the independent test set. We sampled negative data

according to the same strategy used in Task1, Task2 and

Task3. We retrained our DeepAraPPI method using the

newly compiled training data set and obtained its perfor-

mance on the independent test set.

We submitted all the protein pairs in the independent

test set to the websites of these three existing methods to

Table 1 Overall performance of our models measured by AUPRC
for Task1, Task2 and Task3

Task1 Task2 Task3

RCNN 0.925 0.746 0.481
Domain2vec 0.868 0.780 0.681
Go2vec 0.939 0.871 0.803
Logistic Regression 0.965 0.897 0.825
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obtain the corresponding prediction results. The FPR and

TPR values obtained by AraPPINet were 0.063% and 9.1%,

respectively. When the FPR value of our proposed model

was set at 0.063%, the TPR value of our proposed model

was 24.1%, which is considerably higher compared with

AraPPINet (Figure 3d). Using a similar strategy, we set the

same FPR value as that of AtPIN or AtPID, and our predic-

tive model achieved a much higher TPR value (Figure 3d),

clearly indicating that our model outperforms these three

state-of-the-art methods.

It is also interesting to benchmark DeepAraPPI against

state-of-the-art non-plant-specific PPI predictors. To this

end, we compared DeepAraPPI with a recently developed

human PPI predictor called D-SCRIPT (Sledzieski

et al., 2021). In brief, D-SCRIPT utilizes a pre-trained protein

language model to obtain structurally informative protein

embeddings as input and implements the PPI prediction

through a deep learning architecture. To allow for a fair

comparison, we downloaded the source code of D-SCRIPT,

and retrained and evaluated the model using the data sets

compiled for comparing the three existing plant PPI

predictors. As shown in Figure S1, DeepAraPPI performs

better than D-SCRIPT (AUPRC = 0.828 vs 0.708).

Cross-species prediction

We collected experimentally verified rice PPIs from four

public databases (DIP, MINT, BioGRID and IntAct) and the

literature (Wierbowski et al., 2020). After removing self-

interactions, non-physical interactions and redundant inter-

actions, 611 rice PPIs between 555 proteins were retained

as positive samples. Protein pairs other than known rice

PPIs were randomly selected as negative samples, keeping

the ratio of positives to negatives at 1:10. We used our

deep learning models (i.e. RCNN, Domain2vec, GO2vec

and the integrated LR model) that we trained on Arabidop-

sis data to predict rice PPIs. Specifically, we employed the

DPC encoding-based RF model inferred from Arabidopsis

as a baseline predictor to assess the cross-species predic-

tion performance.

In Figure 4, we found that the AUPRC values of RCNN,

Domain2vec and GO2vec are 0.248, 0.279 and 0.265,

respectively. The AUPRC of the integrated LR model is

Figure 2. Model INTERPRETABILITY of DeepAraPPI. (a, b) Visualization of features learned from the recurrent convolutional neural network (RCNN) model. We ran-

domly select 1000 positive and 1000 negative samples from the independent test set of Task1, visualizing such samples using the tsnecuda PYTHON library

(https://pypi.org/project/tsnecuda). (a) Raw input data. (b) Visualization of sequence pair vectors produced by the multiplication of a pair of protein embedding

vectors after convolution. (c, d) Examples showing that RCNN can effectively capture sequence regions relevant to protein interacting residues to implement the

classification task. The images present surface representations of the interaction between proteins P56761 (blue) and P83755 (green) (PDB code: 5MDX). The

red-colored residues in (c) are interacting residues between P56761 and P83755 (80 residues for P56761 and 81 residues for P83755), whereas the red-colored

residues in (d) are the top residues in the class-discriminative localization maps (80 residues for P56761 and 81 residues for P83755). (e) Significant correlation

between Gene Ontology (GO) similarity and protein similarity inferred by GO2vec.

� 2023 Society for Experimental Biology and John Wiley & Sons Ltd.,
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0.305, which is 0.026 higher than the best individual model

(i.e. Domain2vec), indicating that the LR integrated model

performs better than the three individual models. In com-

parison, the RF model performs worst, with an AUPRC of

0.171. Although the performance rankings of our models

to predict rice PPIs show the same trend compared with

Arabidopsis, the current cross-species performance is dra-

matically inferior to the counterpart in Arabidopsis (cf. Fig-

ure 4 and Table 1). We speculate that the decreased

performance in cross-species prediction can be partly

attributed to the insufficient PPI data in the rice test set. On

the other hand, the models trained on Arabidopsis are still

highly biased to deal with Arabidopsis proteins and their

generalizability to other plant species is limited.

We further randomly divided the data set of rice into

a training data set capturing 80% of the data, with the

remainder serving as an independent test set, and com-

bined the rice-specific training set with the data set of

Arabidopsis as a new hybrid training set. As the GO2vec

model has favorable performance among the three predic-

tors, we retrained the GO2vec model on this hybrid train-

ing set and predicted the independent test set of rice with

an AUPRC of 0.561. Comparatively, the original GO2vec

model of Arabidopsis only yielded an AUPRC of 0.285 in

Figure 3. Comparison of DeepAraPPI with other methods. (a–c) Precision–recall curves indicate that DeepAraPPI outperformed random forest (RF) models with

three encoding schemes. Panels (a), (b) and (c) display the performance of Task1, Task2 and Task3, respectively. (d) Performance comparison of DeepAraPPI

with three existing Arabidopsis PPI prediction methods. By tuning the false-positive rate (FPR) resulting from AraPPINet, AtPIN and AtPID, DeepAraPPI showed

a much higher true-positive rate (TPR).

Figure 4. Performance comparison of various classifiers in predicting rice

protein–protein interactions (PPIs). Areas under the precision–recall curves
(AUPRC) indicate that the logistic regression (LR) integrated model provided

the best prediction performance compared with the recurrent convolutional

neural network (RCNN), Domain2vec, GO2vec and random forest (RF)

models.

� 2023 Society for Experimental Biology and John Wiley & Sons Ltd.,
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predicting the independent test set of rice, indicating that

the prediction performance improves when the training

set presents features similar to the independent test set.

In real applications, training using a hybrid data set is a

potential alternative for predicting PPIs in rice. We wish to

emphasize that the generalizability of the model for cross-

species application remains an open issue in PPI

prediction.

Online prediction platform

We provide an online PPI prediction platform that currently

supports the prediction of Arabidopsis and rice (http://

zzdlab.com/deeparappi). The webserver is implemented

with CentOS 7.4 and Apache 2.4.6. Users can choose

RCNN, Domain2vec, GO2vec and the integrated LR model

to predict PPIs. We also provide alternative choices of dif-

ferent FPR thresholds. It is important to note here that

Domain2vec, GO2vec and the integrated LR model have a

pre-trained corpus. If the protein inputted by the user is

not in our corpus, it cannot be predicted using the above

models. In this case, the user can choose RCNN as RCNN

is only based on sequence information. We have also

made the source code and all the data sets of DeepAraPPI

downloadable from our online platform and Github

(https://github.com/zjy1125/DeepAraPPI).

Presenting two cases to guide users to properly

access the online platform, we first predict the probability

of interaction between the Arabidopsis proteins Q9S745

and Q9SU72 through our webserver (Figure 5a) that has

been experimentally observed (Feys et al., 2001; Pruitt

et al., 2021). Both proteins are lipase-like proteins that play

important roles in plant disease resistance and are essen-

tial for plant defense to enhance the accumulation of the

molecule salicylic acid (Pruitt et al., 2021). As for the pre-

diction, we first select the species ‘Arabidopsis thaliana’

and the model ‘Logistic Regression’, subsequently input

the corresponding protein sequences in Fasta format and

select an FPR threshold of 0.05%. As shown in Figure 5b,

both prediction scores generated by the RCNN and

Domain2vec models are relatively low, whereas the score

yielded by GO2vec is close to 1. The prediction score of

the final LR model is 1, indicating that the two proteins

interact. The successful prediction is rooted in the ability of

the GO2vec model to capture similar functions of the two

proteins. Predicting another experimentally known interac-

tion between proteins F4K5K0 and Q9SDY5 as our second

Figure 5. Usage of our online prediction platform. (a) The input page of our web server. (b) Prediction result of the protein pair Q9S745–Q9SU72. (c) Prediction

result of the protein pair F4K5K0–Q9SDY5.

� 2023 Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2023), doi: 10.1111/tpj.16188
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case (Figure 5c), we observed that the prediction scores of

RCNN and GO2vec are relatively low, whereas the

Domain2vec model contributes a high score (i.e. 0.913). In

particular, the known interacting domain pair

(‘UQ_con’–‘zf-rbx1’) was found between the two interacting

proteins, which suggests that the Domain2vec model can

accurately predict interactions mediated by domain–
domain interactions (DDIs). Taken together, the DeepAr-

aPPI webserver is easy to use, and can jointly utilize

sequence, domain and GO information to maximize predic-

tive performance.

CONCLUSION

To provide a reliable tool that allows PPI predictions in

plants, we propose a deep learning model for predicting

PPIs in Arabidopsis. Our DeepAraPPI framework effectively

integrates sequence, domain and GO information to repre-

sent protein features. The benchmarking experiments

demonstrate that DeepAraPPI performs well on Arabidop-

sis PPI data sets at different difficulty levels. To further ver-

ify its effectiveness, we compare the performance of

DeepAraPPI with multiple competitive baseline methods,

indicating that DeepAraPPI considerably outperforms

existing state-of-the-art Arabidopsis PPI prediction

methods. At the same time, we verify the feasibility of the

current strategy for cross-species prediction performance.

Although DeepAraPPI performs better than traditional

machine learning methods in predicting rice PPIs, its per-

formance is still far behind that of Arabidopsis, meaning

that there is still room for improvement in real applica-

tions. In the future, with the increasing availability of

experimental PPI data and other data associated with pro-

tein interactions, it will be possible to achieve more accu-

rate cross-species prediction. First, with the emergence of

Alphafold2 (Jumper et al., 2021), protein structural infor-

mation is easily accessible, which can be used as an

important input feature to develop predictive models with

better performance in cross-species prediction. Second,

with the advent of large pre-trained protein language

models (Rives et al., 2021), protein sequences can be con-

verted to semantically rich feature representations, which

have been successfully used for diverse protein bioinfor-

matics prediction tasks (Rives et al., 2021). The application

of protein language models in predicting PPIs is promising

(Sledzieski et al., 2021; Yang, Yang, Li, et al., 2020), and

further efforts are needed to explore the potential in cross-

species PPI prediction. Last but not least, the high-

throughput experimental determination of plant PPIs is

proceeding at an accelerating rate, which will directly

boost the development of plant PPI predictors. For

instance, the recently published maize PPIs (Han

et al., 2023) will become an important data resource to

train new plant PPI predictors with improved performance

in cross-species settings.

EXPERIMENTAL PROCEDURES

Data set construction and partition

We collected experimentally verified PPIs of Arabidopsis from Bio-
GRID (https://thebiogrid.org) (Chatr-Aryamontri et al., 2017), DIP
(https://dip.doe-mbi.ucla.edu/dip/Main.cgi) (Salwinski et al., 2004),
IntAct (https://www.ebi.ac.uk/intact) (Orchard et al., 2014), MINT
(https://mint.bio.uniroma2.it) (Licata et al., 2012) and TAIR (https://
www.arabidopsis.org) (Lamesch et al., 2012). To unify protein IDs
from these different databases, protein IDs of different types were
converted to UniProt IDs. We further discarded self-interactions,
redundant interactions, non-physical interactions and PPIs con-
taining proteins with fewer than 40 amino acids or with non-
standard amino acids. Finally, we obtained 49 398 experimentally
verified PPIs between 10 330 Arabidopsis proteins.

To obtain high-quality PPIs as positive samples, we adopted
the Human Integrated Protein–Protein Interaction rEference (HIP-
PIE) scoring scheme to assess the confidence of the collected Ara-
bidopsis PPIs (Schaefer et al., 2012). For each PPI, a quality score
ranging from 0 to 1 was assigned by accounting for: (i) the experi-
mental methods for the PPI determination; (ii) the number of arti-
cles in the literature reporting the PPI; and (iii) the species
included in the PPI. Preliminarily, we determined a threshold of
0.72 to classify 49 398 PPIs into a high-quality subset (11 858 PPIs
with a score of ≥0.72) and a low-quality subset (37 540 PPIs with a
score of <0.72). More details about the justification of the thresh-
old value (0.72) are available in Figure S2 and Table S1.

We downloaded the reference proteome sequences of Arabi-
dopsis from UniProt (https://www.uniprot.org) (The UniProt Con-
sortium, 2021) and removed protein sequences with fewer than 40
amino acids or non-standard amino acids, totaling 28 361
sequences. We sampled negative training data by randomly
selecting protein pairs from this pool. In particular, we constrained
the sample proteins to neither share the same subcellular localiza-
tion nor belong to the pool of known interactions. Furthermore,
we set the ratio of positive to negative samples at 1:10.

Considering that the PPI prediction is based on paired input,
its performance is significantly affected by different data set parti-
tions (Park & Marcotte, 2012). Therefore, we designed three tasks
at different difficulty levels to assess the prediction performance of
our model. As for Task1, we considered 11 858 high-quality PPIs as
positive samples, whereas we randomly sampled 118 580 protein
pairs as negative samples following our negative sampling strat-
egy. Finally, training data comprise a random sample of 80% of the
PPIs, with the remaining 20% of PPIs serving as an independent
test set. As for Task2 and Task3, we followed the data set partition
method proposed by (Park & Marcotte, 2012). First, the high-quality
PPI data set was segmented into three subsets (C1, C2 and C3),
where the corresponding number of PPIs are 2844, 6005 and 3009,
respectively. Subset C1 is used as the positive training set in Task2
and Task3. PPIs in C2 were used as positive samples of the inde-
pendent test set in Task2. Note that each PPI in C2 shared only one
protein with C1. The PPIs in C3 were used as positive samples of
the independent test set in Task3, where each PPI in C3 does not
share any protein with C1. Negative samples in C1, C2 and C3 still
follow the sampling strategy of Task1.

RCNN-based predictor

We employ a Siamese RCNN model to predict Arabidopsis PPIs
based on sequence information. In particular, the RCNN predictor
consists of a pre-trained amino acid embedding module, a mixed
neural network module of CNN and gated recurrent units (GRUs),

� 2023 Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2023), doi: 10.1111/tpj.16188
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and a prediction module (Figure 1b). To represent protein
sequences as feature vectors, RCNN pre-trains the embedding of
20 standard amino acids based on word2vec. The CNN model is
used to extract sequence features, whereas the GRU model cap-
tures long-term dependency information of the sequence. Based
on the representations generated in the above steps, the predic-
tion module outputs a prediction score through a soft-max func-
tion, assessing the interaction probability of a pair of proteins.

Pre-trained amino acid embedding module

In more detail, word2vec transforms amino acids of the protein
sequences into numerical embedding vectors. Specifically, we uti-
lized protein sequences from the Uniref50 database and adopted
the continuous bag-of-words (CBOW) model architecture to train
the word2vec model, allowing us to represent each word by sur-
rounding context words. The word2vec model training was imple-
mented through the PYTHON library Gensim (https://pypi.org/
project/gensim). The prediction results of fivefold cross-validation
in Task1 were used to evaluate the performance of word2vec with
different hyper-parameters, allowing us to find an optimal window
size = 3 and represent each amino acid through a 32-dimensional
embedding vector. Furthermore, we truncated long sequences
into a fixed length L (i.e. 2000) and zero-padding short sequences
(Min et al., 2017), representing each protein as an L × 32 array.

Siamese CNN–GRU module

As stacking multiple CNN and GRU layers allows us to better cap-
ture patterns of interacting proteins, we construct a Siamese
CNN–GRU architecture with two identical CNN–GRU subnetworks
sharing the same parameters (Chen et al., 2019; Hashemifar
et al., 2018). High-dimensional local features are first captured by
a CNN, which are further modeled by a GRU unit to reflect
sequential and contextualized information.

In particular, we use 1D convolution layers with a kernel size
of 3 to extract the feature of an n × s dimensional array X at any
position, where n represents length and s is the dimension of the
features (i.e. channels), set to 50. After each convolution opera-
tion, the maximum pooling layer is used to reduce the dimension
and ensure the invariance of features. The GRU unit is a variant of
long short-term memory (LSTM) modules (Cho et al., 2014). How-
ever, unlike LSTMs, GRU does not introduce additional memory
units. The GRU introduces an update gate to manage how much
information the current state needs to retain from the historical
state and how much new information it needs to receive from the
candidate state. To better capture context information, we use the
bidirectional GRU layer to process data from the 50 channels of
the previous CNN.

Prediction module

The prediction module is composed of one multiplication layer
and a subsequent MLP with three fully connected layers. First,
element-wise multiplication is performed on the embedding vec-
tors of a pair of proteins to eliminate the bias caused by the order
of protein input in the pairwise output. Then, a sequence pair vec-
tor is obtained as the input of the fully connected layers in the
MLP to calculate the probability that two proteins interact using
the softmax function.

Domain2vec-based predictor

Considering that the physical interaction between two proteins is
often mediated by DDI, we also developed a Domain2vec-based
predictor using domain information as the input. To this end, we

downloaded all known DDI information from the 3did database
(http://3did.irbbarcelona.org) (Mosca et al., 2014) and annotated
the domain information of proteins through HMMER (http://hmmer.org)
(Potter et al., 2018). We integrated the DDIs and protein domain
annotation to generate a network consisting of 37 342 nodes and
80 123 edges as the input to node2vec (Grover & Leskovec, 2016) to
effectively convert each protein into a feature vector. Inspired by the
Skip-Gram model, node2vec takes nodes as words and extracts node
sequences from the underlying network as sentences and transforms
the network into a document with an ordered sequence of nodes. In
our case, we integrate DDI and domain annotations of proteins into
a network (Figure 1c), where nodes are proteins or domains. Edges
represent DDIs or protein–domain annotations (i.e. if protein A con-
tains domain m, the association between protein A and domain m is
represented by an edge). After training the node2vec model, each
protein is represented by an embedding vector concatenated into a
sequence pair vector, which serves as the input of an MLP contain-
ing three fully connected layers to predict the interaction probability
of a protein pair.

GO2vec-based predictor

The GO annotation system establishes a standard functional
vocabulary for genes and their products, which can be regarded
as a directed acyclic graph structure. Each node (i.e. GO term) in
the annotation system is a functional description of a gene or pro-
tein, connected by three strict relationships between nodes (i.e.
‘is_a’, ‘part_of’ and ‘regulates’) (Zhong et al., 2019). We integrated
the relationships between GO terms and GO annotations of pro-
teins into a hybrid network (i.e. GO graph) of 92 359 nodes and
294 460 edges, where each node is embedded in a vector after
training with node2vec. After concatenating the embedding vec-
tors of two proteins into a protein pair vector, we used an MLP
with three fully connected layers to calculate the probability of
whether two proteins interact.

Logistic regression model

To maximize prediction performance, we combined these individ-
ual scores (i.e. SRCNN, SDomain2vec and SGO2vec) into a vector and
trained an LR model reflecting the overall interaction probability
of each query protein pair. The LR algorithm implemented in this
study was based on the scikit-learn PYTHON library (https://scikit-
learn.org) (Pedregosa et al., 2011), using L2 penalty and a linear
solver. The optimal hyperparameters of the model were deter-
mined by using the GridSearchCV function with fivefold cross-
validation.

RF model

As a benchmark of traditional machine learning-based prediction
methods, we also constructed RF predictive models. The basic
units of RF are decision trees, achieving predictions through the
votes from all decision trees. We set the number of optimal trees
in the forest (n_estimators) to 79 and retained the other default
parameters. In this work, the RF algorithm was also implemented
using the scikit-learn PYTHON library (https://scikit-learn.org) (Pedre-
gosa et al., 2011). Here, the RF predictive models mainly
accounted for three sequence-based encoding schemes, including
AC, CT and DPC.

Auto covariance (AC)

Auto covariance (AC) encoding represents the properties of
amino acids using seven indices, including hydrophobicity, hydro-
philicity, polarity, polarizability, side-chain volumes of amino

� 2023 Society for Experimental Biology and John Wiley & Sons Ltd.,
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acids, solvent-accessible surface area and net charge index of resi-
due side chains (Guo et al., 2008). Furthermore, AC encoding
accounts for neighboring effects between amino acids at a certain
distance. In particular, we determine the AC score of a protein P of
length L as:

SAC lag, Lð Þ ¼ 1

L�lag
∑

L�lag

i¼1

Ri,j�1

L
∑
L

k¼1

Rk ,j

� �

� R iþlagð Þ,j�1

L
∑
L

k¼1

Rk ,j

� �
,

where lag represents the sequence distance between residues. Ri,j

and Rk ,j denotes the jth physicochemical property value of the ith

residue and kth residue, respectively. Here, we set lag ranging
from 1 to 30, allowing us to transform a protein pair into a
30 × 7 × 2 = 420 dimensional vector.

Conjoint triad (CT)

After binning 20 amino acids into seven groups based on the
physicochemical properties of residue side chains, CT considers
the proportions of three consecutive amino acid groups in a pro-
tein sequence (Shen et al., 2007), defined as:

SCT GiGjGk

� � ¼ NGiGjGk

L�2
, i, j, k ∈ 1, 2, . . . , 7ð Þ,

where Gi , Gj and Gk represent the groups of residue i, j and k ,
NGiGjGk

denotes the number of the CT (GiGjGk ) in the sequence
and L is the length of the sequence. As a consequence, each pro-
tein pair is represented by a 7 × 7 × 7 × 2 = 686 dimensional
vector.

Dipeptide composition (DPC)

The DPC represents the proportion of two consecutive amino
acids in a protein (Zhou et al., 2012), defined as:

SDPC AiAj

� � ¼ NAiAj

L�1
, i, j ∈ 1, 2, . . . , 20ð Þ,

where Ai and Aj represent two of the 20 amino acids, NAiAj

denotes the number of dipeptide (AiAj ) in the sequence and L is
the length of the sequence. As a consequence, a protein pair is
represented by a 20 × 20 × 2 = 800 dimensional vector.
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