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Abstract

The identification of plant–pathogen protein–protein interactions (PPIs) is an attractive and challenging research topic for de-
ciphering the complex molecular mechanism of plant immunity and pathogen infection. Considering that the experimental
identification of plant–pathogen PPIs is time-consuming and labor-intensive, computational methods are emerging as an im-
portant strategy to complement the experimental methods. In this work, we first evaluated the performance of traditional
computational methods such as interolog, domain–domain interaction and domain–motif interaction in predicting known
plant–pathogen PPIs. Owing to the low sensitivity of the traditional methods, we utilized Random Forest to build an inter-
species PPI prediction model based on multiple sequence encodings and novel network attributes in the established plant PPI
network. Critical assessment of the features demonstrated that the integration of sequence information and network attri-
butes resulted in significant and robust performance improvement. Additionally, we also discussed the influence of Gene
Ontology and gene expression information on the prediction performance. The Web server implementing the integrated pre-
diction method, named InterSPPI, has been made freely available at http://systbio.cau.edu.cn/intersppi/index.php. InterSPPI
could achieve a reasonably high accuracy with a precision of 73.8% and a recall of 76.6% in the independent test. To examine
the applicability of InterSPPI, we also conducted cross-species and proteome-wide plant–pathogen PPI prediction tests. Taken
together, we hope this work can provide a comprehensive understanding of the current status of plant–pathogen PPI predic-
tions, and the proposed InterSPPI can become a useful tool to accelerate the exploration of plant–pathogen interactions.
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Introduction

Plants face a battery of pathogens such as bacteria, oomycetes,
fungi and viruses during their lifetime. It was reported that the

loss in crop production caused by pathogen infections ranged
from 20% to 40% and the direct economic loss was up to 40 bil-
lion dollars yearly in the United States alone [1, 2]. In China, one
plant pathogenic fungus named Rhizoctonia solani could affect
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approximately 15–20 million hectares of rice growing area, caus-
ing 6 million tons of rice grains loss per year [3]. Therefore, in-
depth understanding of plant–pathogen interaction is critical
for the breeding of disease-resistant crops and agricultural pro-
duction improvement.

The plant–pathogen interaction is a two-way biological com-
munication process. On the one hand, plants attempt to recog-
nize the molecules secreted by pathogens to avoid being
infected, but on the other hand, pathogens manipulate plants
as much as possible to make the host environment more benefi-
cial to them [4]. Such a complicated relationship is often vividly
regarded as the ‘arms race’ between plants and pathogens. So
far, two levels of plant immune responses to pathogens have
been well established. Briefly, pattern recognition receptors
located on the plant cell surface first recognize pathogen-
associated molecular patterns (PAMPs) from pathogens and ac-
tivate the first tier of plant immunity called PAMP-triggered
immunity (PTI). To sabotage the PTI response, pathogens se-
crete virulence molecules called effectors into plant cells. In re-
sponse, plants use intracellular resistance proteins (R-proteins)
to specifically recognize effectors and trigger the second tier of
immune response named effector-triggered immunity (ETI)
[5, 6]. The interaction partners of effectors in plants are defined
as targets. The effector recognition process includes direct and
indirect recognition, which means that targets could be either
R-proteins or other accessory proteins. Therefore, the ETI pro-
cess particularly depends on protein–protein interactions (PPIs)
between pathogen effector proteins and their host targets.

Currently, experimental determination methods, such as yeast
two-hybrid [7] and tandem affinity purification-mass spectroscopy
[8], have been used to identify host–pathogen PPIs. In the mean-
time, a series of experimentally validated host–pathogen PPI data-
bases have been constructed, including VirHostNet [9], HPIDB [10],
PHISTO [11], PATRIC [12], VirusMentha [13] and HIV-1 Human
Interaction Database [14]. Most of these databases focus on the

PPIs between human and pathogens (especially viruses). By con-
trast, the plant–pathogen PPI data are quite limited in the existing
host–pathogen PPI databases, and there is no plant-specific
host–pathogen PPI database. To have a global view of current
plant–pathogen PPIs, we survey and summarize existing plant–
pathogen PPI resources [10, 15–23] in Table 1. Among these data
resources, HPIDB is probably the most comprehensive database
containing plant–pathogen PPIs. It collects 569 plant–pathogen
PPIs, most of which are related to the model plant Arabidopsis thali-
ana (Arabidopsis) and the corresponding pathogens. Owing to the
fact that experimental methods are still time-consuming and
labor-intensive, the number of plant–pathogen PPIs is still limited,
which is still not sufficient to keep pace with the rapid develop-
ment of functional genomics studies in the field of plant path-
ology. To complement experimental methods, there is an urgent
need to develop computational methods to accelerate the identifi-
cation of new plant–pathogen PPIs.

Traditional PPI prediction methods such as interolog
mapping [24], domain-based inference [25], gene fusion [26],
phylogenetic similarity [27], gene co-expression [28] and
structure-based method [29, 30] are initially designed to pre-
dict intra-species PPIs. With the advance of inter-species PPI
studies, some of these methods, such as interolog and
domain-based inference, have also been used to predict inter-
species PPIs (e.g. human–pathogen PPIs [31–33] and plant–
pathogen PPIs [18, 20]). In recent years, machine learning (ML)
has been widely applied to solve diverse bioinformatics clas-
sification tasks including PPI prediction [34]. A series of ML al-
gorithms, such as Naı̈ve Bayes (NB) [35], Support Vector
Machine (SVM) [36], Random Forest (RF) [37] and multitask
learning [38], have been used to predict human–hepatitis
C virus, human–papillomaviruses, human–Plasmodium falcip-
arum PPIs. In contrast, there are few reports about ML-based
plant–pathogen PPI prediction methods. Arabidopsis as an
important model plant has been widely used to study

Table 1. Existing databases and resources related to plant–pathogen PPIs

Name Description Method PPIsa URLs

PHI-base It stores functional interactions between pathogens and
plants, among which few are physical PPIs.

Experimentally
verified

18 http://www.phi-base.org/index.
jsp

HPIDB 2.0 It stores PPIs from existing interaction resources and
manual curation of published literature. Only about
1% of all collected PPIs are between plant species and
their pathogens.

Experimentally
verified

531 http://www.agbase.msstate.
edu/hpi/main.html

PPIN1 It contains PPIs between 36 Psy, 60 Hpa effectors and 165
Arabidopsis proteins.

Experimentally
verified

342 http://signal.salk.edu/interac
tome/PPIN1.html

XooNET It stores predicted PPIs between Xanthomonas Oryza pv.
oryzae membrane proteins and rice proteins.

Interolog and
DDI

3407 http://www.inetbio.org/xoonet/
downloadnetwork.php

PPIRA It contains predicted PPIs between Ralstonia solanacea-
rum proteins and Arabidopsis proteins.

Interolog and
DDI

3074 http://protein.cau.edu.cn/
ppira/

PCPPI It contains predicted PPIs between Penicillium expansum
and seven crops.

Interolog and
DDI

439 904 http://bdg.hfut.edu.cn/pcppi/
index.html

UVPID It stores predicted PPIs between Ustilaginoidea virens and
rice.

Interolog and
DDI

3597 http://sunlab.cau.edu.cn/uvpid/

Sahu et al. It provides a proteome-wide prediction of PPIs between
Psy and Arabidopsis.

Interolog and
DDI

0.79 million NA

Kshirsagar
et al.

It uses ML to predict PPIs between Salmonella and
Arabidopsis. Features such as protein sequence infor-
mation (e.g. n-mer or n-gram), GO similarity and gene
expression patterns were used as input.

Transfer learning NA http://www.cs.cmu.edu/
�mkshirsa/

aThe PPIs are either experimentally identified or computational predicted by interolog, domain-domain interaction (DDI) and machine-learning (ML)-based methods.

Only physical PPIs between plant and pathogen proteins are counted here.
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plant–pathogen PPIs. Therefore, the studies of Arabidopsis–
pathogen PPIs will largely promote the understanding of plant
pathology.

To develop a ML-based PPI predictor, designing appropriate
encoding schemes of the interacting protein pair is a prerequis-
ite, which transforms an interacting protein pair into a feature
vector that is further used as the input of ML algorithms.
Previous studies had used a series of sequence-based encodings
such as di-peptide composition (DPC) [39], auto covariance (AC)
[40] and conjoint triad (CT) [41] to extract features from a protein
pair. However, for inter-species PPI prediction, the prediction
task is much more challenging owing to the need of describing
the relationship between two species. To solve this problem,
the computational framework by integrating heterogeneous
biological information was proposed to predict human–patho-
gen PPIs [42]. The result showed that the integrated features
outperformed pure sequence-based encodings.

Rather than predicting all possible plant–pathogen PPIs, here
we focused on the prediction of PPIs between pathogen ef-
fectors and their host targets, which is based on the following
reasons. First, the effector–target PPIs constitute the vast major-
ity of the inter-species PPIs between plants and pathogens.
Second, hundreds of PPIs between pathogen effectors and
Arabidopsis targets have been identified through high-
throughput interactomics studies [16, 43], which provides es-
sential data to assess/develop plant–pathogen PPI predictors.
Third, a plethora of well-performed effector prediction tools
have been developed [44, 45], which provides a solid basis for
the prediction of PPIs between effectors and their host targets.
Last but not the least, previous studies conducted systematic
analyses about the network topology of effector targets in the
host PPI network. For instance, it has been established that ef-
fectors tend to attack hubs in the host PPI network [16], and we

have recently revealed that the known targets are closer to each
other [46]. These findings also provide important clues to design
some effective encodings to predict effector–target interactions.

In this work, we conducted a comprehensive assessment of
current plant–pathogen PPI prediction methods and proposed
an improved ML-based predictor. The pipeline is illustrated in
Figure 1. First, we evaluated the interolog and domain-based in-
ference methods on all experimentally validated Arabidopsis–
pathogen PPIs. It turned out that the traditional methods failed
to effectively detect PPIs. Then, we systematically benchmarked
different encoding schemes such as sequence- and network-
based features in predicting Arabidopsis–pathogen PPIs. To de-
velop a new predictor with improved performance, we used RF
to train the classification models based on integrative feature
encoding design, and the independent test showed that the se-
quenceþnetwork encoding outperformed sequence-based
encoding alone. Finally, we implemented the RF-based method
on a webserver termed as InterSPPI, and we tested it in cross-
species prediction and proteome-wide plant–pathogen PPI
identification. We anticipated that the current work could also
provide inspiration to design more powerful inter-species PPI
prediction tools.

Materials and methods
Data collection and data set construction

In general, experimentally validated PPIs are referred as positive
samples, which were 459 Arabidopsis–pathogen PPIs collected
from two recently published literature [16, 43]. These experi-
mentally verified PPIs cover three representative pathogens,
including Pseudomonas syringae (Psy), Hpaloperonospora arabidop-
sis (Hpa) and Golovinomyces orontii (Gor). Pseudomonas syringae is a

Figure 1. The workflow of this work. The assessed approaches are mainly divided into two categories. One is traditional methods including interolog, DDI and DMI. The

other is ML-based methods. To achieve a good predictive performance, we designed and compared sequence-based and network attributes-based encodings. Then, we

used various ML algorithms to train prediction models. After comparing different predictors, the RF-based classification model that utilizes sequence and network at-

tributes was finally chosen for webserver implementation because of its superior prediction performance.
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bacterial pathogen, and the number of Arabidopsis–Psy (Ara-Psy)
PPIs is 104, which involve 60 Arabidopsis proteins and 38 Psy ef-
fectors. Hpaloperonospora arabidopsis belongs to oomycetes, and
the corresponding number of Arabidopsis–Hpa (Ara-Hpa) PPIs is
233, involving 122 Arabidopsis proteins and 64 Hpa effectors.
Golovinomyces orontii is a fungal pathogen, and the correspond-
ing Arabidopsis-Gor (Ara-Gor) PPI number is 122, involving
60 Arabidopsis proteins and 46 Gor effectors. Details about the
interaction data set are also illustrated in Figure 2. Considering
the difference between pathogens, three pathogen-specific
models and a general model covering all pathogens were built
simultaneously.

To compile negative samples, we first collected Arabidopsis
PPIs from public PPI databases including TAIR (Version of
2016.03.02) [47], BioGRID (Version of 2016.03.02) [48] and IntAct
(Version of 2016.03.02) [49]. After removing redundant PPIs, we
obtained 28 110 PPIs containing 7437 Arabidopsis proteins. These
PPIs constituted the primary Arabidopsis intra-species PPI net-
work (AraPPI). Because the prerequisite of network-based
encoding is the presence of host target proteins in AraPPI, we
only selected the proteins in AraPPI when building negative
PPIs. Although several negative sampling schemes have been
proposed previously, there is still no well-established ‘gold
standard’ for non-interactions. The most widely used method is
to randomly select PPIs from the set of all possible protein pairs
except those already reported to interact. Regarding inter-
species PPIs, the whole negative set is the combination of
protein pairs between the host proteins in AraPPI and pathogen
effectors. The possible combinations are 38� 7437 �
104¼ 282 502, 64� 7437 � 223¼ 475 745, 46� 7437 � 122¼ 341 980
and 148� 7437 � 459¼ 1 100 217 for Ara-Psy, Ara-Hpa, Ara-Gor
and Ara-all_pathogens, respectively.

After we obtained the initial positive and negative samples,
the final step is to construct appropriate data sets for training a
prediction model and assessing the performance. To better de-
scribe the data set construction, we took Ara-Psy as an example,
and the generation of other data sets is similar to Ara-Psy. First,
we randomly selected approximately one-fifth PPIs (i.e. 21) from
the positive samples as the positive samples of the independent
test set, and the remaining four-fifth PPIs (i.e. 83) were used as
the positive samples of the training set. Second, we randomly
selected negative samples from the whole negative sets to keep

a 1:10 positive-to-negative ratio in both sets. To reduce the bias
of negative samples, the negative sampling in the training set
was repeated 10 times. The details are also illustrated in
Supplementary Figure S1. Note that all samples in the inde-
pendent test were not used during the training.

The interolog and domain-based methods for
PPI prediction

Based on the compiled inter-species PPI data, we assessed the
performance of three conventional computational methods [i.e.
interolog, domain–domain interaction (DDI), and domain–motif
interaction (DMI)] in predicting Arabidopsis–pathogen PPIs. The
interolog method is based on the conservation of interacting
protein pairs across different species. Briefly, if protein A inter-
acts with protein B in one organism, the corresponding homo-
logs in another organism (protein A0 and protein B0) should also
interact. Here protein pair A and B are regarded as the template
to infer the predicted interaction pair A0 and B0. To implement
the interolog method, we first compiled a comprehensive tem-
plate library by collecting experimentally verified PPIs from
public interaction databases, including BioGRID (Version of
2016.03.02), IntAct (Version of 2016.03.02), DIP (Version of
2016.03.02) and HPIDB2.0. Moreover, PPIs supported by genetic
interactions were removed to ensure the retaining PPIs are all
physical interactions. As a result, we obtained 765 774 PPIs. We
used BLAST [50] to identify the homologs between the query
protein and all proteins in the template library, and the cutoffs
of BLAST were set as follows. In a query PPI, one protein is from
a pathogen; the other is from Arabidopsis. For both pathogen
and Arabidopsis proteins, the E-value thresholds were defined as
0.01. Besides, both of the sequence identity and coverage cutoffs
were set as 40% for each Arabidopsis protein. Considering it is
relatively difficult for a pathogen protein to find homologs in
the library, both of the sequence identity and alignment cover-
age cutoffs were set as 30% for each pathogen protein.

The central idea of DDI is that a protein pair should interact
if they contain an interacting domain pair. Similarly, the DMI
method is based on the observation that many PPIs are medi-
ated by the interactions between domains and short linear
motifs. For example, it has been known that DMI is a frequent
interaction mode for viruses to attack their hosts [51]. To imple-
ment the DDI and DMI methods, the known DDI and DMI infor-
mation was obtained from the 3did database [52]. The domain
annotation was assigned through the PfamScan tool (ftp://ftp.
ebi.ac.uk/pub/databases/Pfam/Tools/) against the Pfam data-
base (Pfam 30.0) [53] with the default parameter setting, and the
motif scanning was conducted through the regular expression
search based on the specific patterns curated by 3did.

ML algorithms

As an ensemble learning algorithm, RF creates a series of deci-
sion trees from randomly sampled subspaces of the input fea-
ture vectors. In this work, we used RF to train the classification
models. Besides, we also compared RF with other popular ML al-
gorithms, such as SVM, NB and Adaptive Boosting (AdaBoost)
[54], K-Nearest Neighbors (KNN) and Logistic regression (LR). We
used scikit-learn [55], a Python-based ML library, to implement
these algorithms. For RF, the number of trees in the forest was
set as 1000, and the number of features when seeking for the
best split was set as the square root of the total number of fea-
tures. Other parameters were set as default. SVM performs the
classification by mapping a low-dimensional space to a high-

Figure 2. Summary of known inter-species PPI data between effectors of three

pathogens and their host targets in Arabidopsis. In total, there are 459 PPIs be-

tween Arabidopsis targets and effectors of three pathogens, including 233 Ara-

Hpa, 104 Ara-Psy and 122 Ara-Gor PPIs. The total number of the three pathogens’

host targets is 200. Proteins from Arabidopsis and three pathogens are repre-

sented by four circles with different colors.

4 | Yang et al.

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bbx123/4259229
by China Agricultural University user
on 06 December 2017

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbx123#supplementary-data
http://ftp://ftp.ebi.ac.uk/pub/databases/Pfam/Tools/
http://ftp://ftp.ebi.ac.uk/pub/databases/Pfam/Tools/


dimensional space through the kernel trick. Here, the radial
basis function was chosen as the kernel, and parameters C and
c were optimized through grid search, where the ranges of
C and c were set as [2�5, 211] and [2�13, 23], respectively.
AdaBoost is an algorithm for constructing a strong classifier
from a series of weak classifiers and focuses more on the
harder-to-classify cases in the subsequent classifiers. For the
AdaBoost algorithm, the maximum number of trees at which
boosting is terminated was also set as 1000. The NB classifier is
based on Bayes theorem with the independence assumption
among features. Here, we used GaussianNB which allows train-
ing on non-integer feature values. KNN is non-parametric and
neighbors-based classification method. The number of neigh-
bors was set as 5. LR is a special type of regression that esti-
mates the probability of a binary outcome by analyzing the
relationship between one or more independent variables. The
linear model was adopted and the L2-norm penalty function
was assigned.

Performance evaluation

We used the 10-fold cross-validation test to compare the per-
formance of different models on the training data sets. As we
randomly selected negative samples for 10 times, the final re-
sult is the average performance of the 10 replicates. To make a
more stringent comparison, the independent test was also con-
ducted. In this work, four parameters such as Precision, Recall
(i.e. Sensitivity), Specificity and Matthew correlation coefficient
(MCC) were used to evaluate the prediction performance. These
measures are defined as follows:

Precision ¼ TP
TPþ FP

Recall ¼ Sensitivity ¼ TP
TPþ FN

Specificity ¼ TN
TNþ FP

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ � TPþ FNð Þ � TNþ FPð Þ � TNþ FNð Þ

p

where TP, TN, FP and FN represent the numbers of true posi-
tives, true negatives, false positives and false negatives, respect-
ively. To provide a more comprehensive assessment of the
models, the Precision–Recall (PR) curve, which is suitable for the
cases when the positive and negative samples are not balanced
[56], was used. The area under the PR curve is called auPRC. The
closer the auPRC value is to 1, the better the performance of a
prediction method is. All the PR curves were prepared using the
pROC [57] package in R.

Sequence-based encoding schemes

One of the major challenges to build an inter-species PPI pre-
dictor is how to present a protein pair through a fixed-dimension
feature vector. The vector usually contains features inferred from
the primary protein sequence, although the biological meaning
of most sequence-based features is not straightforward. Here, we
mainly assessed four sequence-based encoding schemes, includ-
ing DPC, AC, CT and predicted structural properties (PSP). The

brief introduction of each encoding scheme is provided as follows
(see also Supplementary Table S1).

DPC: DPC represents the percentage of two consecutive
amino acids in the protein sequence [39], which can be calcu-
lated by:

SDPCðAiAjÞ ¼
NAiAj

L� 1
; i; j 2 ð1; 2; . . . ; 20Þ

Where Ai and Aj stand for two of the 20 amino acids,NAiAj is
the total number of the di-peptide AiAj in the sequence. L is the
sequence length, and SDPC(AiAj) is the percentage of AiAj in the
sequence. For an individual protein, the feature dimension of
DPC is 20� 20¼ 400. But for a protein pair, the final feature vec-
tor is characterized by concatenating the feature vectors of two
proteins. Therefore, an 800-dimensional vector is constructed to
represent each protein pair for DPC. Similar strategy is used to
describe a PPI pair for other sequence-based encoding schemes.

CT: The CT encoding considered the properties of three con-
secutive amino acids in the sequence [41]. The 20 amino acids
are clustered into seven groups based on the dipoles and vol-
umes of the residue side chains. The equation to infer the CT
encoding is defined as:

SCTðGiGjGkÞ ¼
NGiGjGk

L� 2
; i; j; k 2 ð1;2; . . . ; 7Þ

Where Gi, Gj and Gk stand for three of the seven residue
groups, NGiGjGk is the total number of the CT GiGjGk in the se-
quence. SCT(GiGjGk) is the final composition of GiGjGk. The di-
mension of CT is 7� 7� 7� 2¼ 686.

AC: The AC encoding considers the neighboring effects
through describing the interaction effects of residues with a cer-
tain distance [40]. Seven standardized physicochemical proper-
ties of amino acids were used to represent the interaction
modes. They are hydrophobicity, hydrophilicity, polarity, polar-
izability, side chain volumes of amino acids, solvent-accessible
surface area and net charge index of residue side chains. The
final equation to calculate the score is as follows:

SACðlag; jÞ ¼ 1
L� lag

XL�lag

i¼1

ðRi;j �
1
L

XL

k¼1

Rk;jÞ � ðRðiþlagÞ;j �
1
L

XL

k¼1

Rk;jÞ; j

2 ð1; 2; . . . ; 7Þ

Where i, k denotes the ith,kth residue in the sequence, and j
represents one of the seven properties, Ri.j and Rk,j stands for the
corresponding jth physicochemical property for the ith and kth
residue, respectively. Here, lag is the sequence distance between
the ith residue and its neighbors, which ranges from 1 to 30 in
this work. Finally, the feature vector AC consists of
30� 7� 2¼ 420 values.

PSP: Previous studies have discovered that protein secondary
structure composition [58] and protein disorder information [59,
60] have an impact on PPIs. To assess the structure-based encod-
ing, we constructed a feature vector called PSP. Briefly, we con-
sidered three regions in the protein sequence: N-terminal (one-
third of the full length of sequence at N-terminal), C-terminal
(one-third of the full length of sequence at C-terminal) and the full
sequence. For each region, we calculated the fraction of three dif-
ferent secondary structure elements (a-helix, b-strand and coil),
and the percentage of disordered residues. The secondary struc-
ture and disorder content were predicted by PSSpred [61] and
IUPred [62], respectively. As the structural features were predicted
from protein sequences, PSP was also essentially sequence-based.
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Integration of different prediction models

We first built a single prediction model for each encoding type
(i.e. DPC, CT, AC or PSP). Then, these predictors were integrated
into a comprehensive sequence-based prediction model. The
model integration is based on Sun et al.’s work [63], which is
defined as follows:

Wj ¼ eð�k=auPRCÞ; k 2 ð1; 2 . . .; 30Þ

S
^
¼ 1�

XN

j¼1

ð1�Wj � SjÞ

Where k is a constant ranging from 1 to 30, and the optimal
value is chosen when the auPRC of the integrated model
reaches the maximum value. Wj is the weight of the jth encod-
ing type base on 10-fold cross-validation. N is the number of in-
dividual models, Sj denotes the prediction score of the jth
individual model and S

^
is the integrated prediction score.

Network-based feature vector

To develop a more accurate predictor, a series of network attri-
butes of host proteins were also used as feature vector. These
network attributes include degree, betweenness, closeness,
transitivity, PageRank, eccentricity and eigenvector. Moreover,
six novel plant–pathogen interaction-specific features, includ-
ing the minimum and average network distances to known tar-
gets, the minimum and average network distances to the
experimentally verified Arabidopsis R-proteins and the min-
imum and average network distances to the predicted
Arabidopsis R-proteins were also incorporated into the network-
based feature vector. The Arabidopsis R-protein information was
retrieved from the PRGdb database, which contains experimen-
tally verified and predicted Arabidopsis R-proteins [64]. The def-
inition of known targets is the set of current Arabidopsis
proteins involving in experimentally identified PPIs with a
pathogen protein. Apparently, if the query protein itself is a
known target, the minimum distance to known targets will be
zero and thus yield biased results to some extent. Therefore,
when calculating the distances, we excluded the query protein
from the known target set in such case. All network attributes
were calculated through igraph [65]. As a result, the network-
based feature vector with a dimension of 13 was obtained (see
also Supplementary Table S1). Note that only Arabidopsis pro-
teins have the network-based feature vector. We trained a pre-
diction model based on the network attributes, and integrated it
with sequence encoding-based prediction models by adopting
the aforementioned model integration strategy.

Other popular encoding schemes

Gene Ontology semantic similarity
Gene Ontology (GO) is a comprehensive resource to unify the
functional description of gene and gene products across species
[66]. The GO annotation includes three categories: molecular
function (MF), cellular compartment (CC) and biological process
(BP). The GO semantic similarity between two proteins has been
proposed as an important feature in the prediction of host–
pathogen PPIs [42]. Here, supposing that pathogen protein A can
interact with host protein B and protein B has three endogenous
interaction partners, we could first calculate the MF, BP and CC
similarities between A and B. The GO semantic similarities

between A and the three endogenous interaction partners of
B were also computed. The maximal similarity score among
A and three endogenous interaction partners of B was con-
sidered as the final similarity between A and endogenous part-
ners of B. Thus, the GO semantic similarity-based encoding
scheme contains a six-dimensional feature vector, including
three effector–target GO similarities and three effector–partner
GO similarities. We took Ara-Psy as an example. First, we con-
ducted GO annotation for Psy and Arabidopsis proteins. The GO
terms of Arabidopsis proteins are available at ftp://ftp.arabidop
sis.org/home/tair/Ontologies/Gene_Ontology/, and the GO infor-
mation for Psy is obtained through Blast2GO [67]. Then, we used
GOSemSim [68] to calculate the corresponding GO similarity val-
ues. Finally, the GO semantic similarity-based feature vector
was constructed with a dimension of 6. We built an RF-based
predictor using the GO semantic similarity alone, and then inte-
grated it with the sequenceþnetwork predictor to assess the ef-
fectiveness of the GO semantic similarity.

Gene expression pattern
Owing to the fact that interacting proteins tend to be co-
expressed, expression correlation of two proteins is an indicator
of interaction [22]. However, for inter-species PPI prediction, ob-
taining expression data that simultaneously detect the gene ex-
pression values of the host and the pathogen genes is quite
difficult. An alternative way is to calculate the fold change value
of the host gene because those differentially expressed genes
are more likely to be involved in inter-species interaction.
Inspired by this idea, we supposed that the fold changes of dif-
ferent time point comparing the pathogen infection condition
and mock control condition could more comprehensively reflect
the possibility that a host gene is involved in the inter-species
interaction. To further verify our hypothesis, we conducted the
test on the microarray data GSE56094, which is a set of gene ex-
pression data describing the dynamic transcriptional changes
of Arabidopsis leaves during the infection by Psy. The expression
data used in this work contain 13 time points with four repli-
cates for each time point. First, we calculated the fold changes
of Arabidopsis gene expression values under two conditions (in-
fection and mock treatment) at each time point. Then, we
merged these fold changes into a vector to represent a gene ex-
pression pattern. Similar to the encoding scheme of network at-
tributes, only Arabidopsis proteins have the gene expression
information-based feature vector. We built the gene expression
information-based predictor, and investigated the combin-
ational effect when the predictor was integrated with the se-
quenceþnetwork predictor.

Results and discussion
Traditional PPI prediction methods failed to identify
Arabidopsis–pathogen PPIs

We used 459 experimentally validated Arabidopsis–pathogen PPIs
and 4590 non-interaction protein pairs to assess the performance
of traditional methods. The assessment is mainly based on two
measures (i.e. Sensitivity and Precision). Among traditional PPI
prediction approaches, interolog is one of the most widely used
methods for intra-species and inter-species PPI prediction.
However, only one PPI was successfully inferred among 459 ex-
perimentally validated Arabidopsis–pathogen PPIs by the interolog
searching (Sensitivity¼ 0.2%, Precision¼ 50%; Table 2). There are
two main reasons for such a low sensitivity. First, the size of the
current PPI template library is still not sufficient. Many pathogen
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effector proteins failed to identify any homolog in the PPI tem-
plate database. Although 95.5% (191 of 200) Arabidopsis proteins
have homologous sequences, only 49.3% (71 of 144) pathogen
proteins have homologous sequences. Second, the current PPI
template library is mainly from intra-species PPIs (717 444/
765 744¼ 93.7%), resulting in handful straightforward inter-
species PPI templates. Indeed, the strategy of inferring inter-
species PPIs from intra-species PPIs is still disputable, although it
has been applied to infer human–virus PPIs [51].

To verify the feasibility of domain-based method in our
Arabidopsis–pathogen system, we conducted the domain anno-
tation of every protein sequence against the Pfam database and
then matched the paired domain information to the 3did
database. Similarly, only one out of the 459 PPIs was success-
fully inferred through DDI. This result indicated that most
of the pathogen effectors did not accommodate a domain
involved in known DDIs. Therefore, the DDI method failed to
predict Arabidopsis–pathogen PPIs in most cases. Comparatively,
DMI achieved a much higher sensitivity. As a result, 10 of 459
known Arabidopsis–pathogen PPIs were identified through DMI.
This result is consistent with previous observation that the
inter-species interactions are likely mediated by DMI [69].
Generally, the length of a motif is much shorter than a domain,
and a protein is easier to be annotated with multiple motifs.
Thus, DMI is prone to yield false positives, resulting in a low
precision (Precision¼ 6.2%). To solve this issue, a reliable
DMI inference should adopt more stringent standards to
identify motifs.

Moreover, we also notice that many ML-based PPI predictors
trained on general PPIs (i.e. intra-species PPIs) have been de-
veloped. It is also interesting to evaluate these traditional
ML-based predictors’ performance on our Arabidopsis–pathogen
system. To do so, we submitted our data set to two online pre-
dictors named PSOPIA (http://mizuguchilab.org/PSOPIA/) [70]
and DXECPPI (http://ailab.ahu.edu.cn:8087/DXECPPI/) [71].
PSOPIA was trained on human PPIs by using averaged one-
dependence estimator (a variant of the NB classifier) with fea-
tures derived from known homologous PPIs, while DXECPPI was
trained on human PPIs by using RF with the ensemble sequence
encoding. The default prediction threshold values defined by
the corresponding servers were adopted to decide whether sub-
mitted sequence pairs interact or not. The testing results indi-
cated that both PSOPIA (Sensitivity¼ 0.4%, Precision¼ 4.4%;
Table 2) and DXECPPI (Sensitivity¼ 14.6%, Precision¼ 10.5%;
Table 2) could not obtain satisfying performance on the predic-
tion of Arabidopsis–pathogen PPIs, further suggesting the large
difference between plant–pathogen PPIs and general PPIs.
Therefore, the existing ML models based on general PPIs are in-
deed not suitable for predicting inter-species PPIs between
Arabidopsis and pathogens. Collectively, the current assessment

experiments clearly showed that the traditional methods failed
to effectively identify inter-species PPIs between Arabidopsis
and pathogens, and the development of new predictors is there-
fore urgently required.

Performance assessment of RF models using
sequence-based encodings

To evaluate the feasibility of ML-based method in Arabidopsis–
pathogen PPI prediction, we used RF to train the classification
model. Because the sequence information is easy to obtain,
most feature encodings are sequence-based. We critically as-
sessed four commonly used sequence-based encoding schemes
(DPC, AC, CT and PSP). Each encoding scheme was applied to
predict the interactions between Arabidopsis proteins and the ef-
fectors from Psy, Hpa, Gor or all of the three pathogens. Here we
mainly use the auPRC values to quantify the performance. As
MCC is also a comprehensive evaluation metric, the maximum
MCC of each PR curve was also reported. Moreover, the other as-
sessment parameters corresponding to the maximum MCC
were also recorded. The average performance of each sequence-
based encoding scheme in the 10-fold cross-validation test is
listed in Supplementary Table S2. In general, the performances
of DPC, CT and PSP are comparable, which outperform the AC
encoding. Taking the prediction of Ara-all_pathogens as an ex-
ample, the auPRC values are 0.759, 0.749 and 0.746 for DPC, CT
and PSP, while the corresponding value is 0.706 for AC. Similar
results were also observed in the independent test
(Supplementary Table S3). Although the dimension of the PSP
encoding is much lower than the other three encodings, it still
obtained a relatively good performance either in the 10-fold
cross-validation test (Supplementary Table S2) or the independ-
ent test (Supplementary Table S3), indicating that predicted
structural features can capture effective information that dis-
tinguishes inter-species PPIs from non-PPIs.

We further evaluated the performance of the overall se-
quence encoding that integrates DPC, CT, AC and PSP. The per-
formance of the 10-fold cross-validation test is summarized in
Figure 3 and Supplementary Table S2. The auPRC values are
0.634, 0.690, 0.734 and 0.776 for Ara-Psy, Ara-Hpa, Ara-Gor and
Ara-all_pathogens, respectively. Compared with the optimal per-
formance achieved by single encoding, the overall sequence
encoding could improve the performance in both cross-
validation test (Supplementary Table S2) and independent test
(Supplementary Table S3), indicating the four sequence-based
encoding schemes are partially complementary to each other.
Nevertheless, the performance improvement after integrating
all sequence-based encodings was still not fully satisfactory.
Therefore, heterogonous features must be taken into account to
develop an accurate inter-species PPI predictor.

Table 2. The performance of traditional methods in detecting Arabidopsis–pathogen PPIs

Traditional methodsa Reference databases Sensitivity Precision

Interolog search Biogrid, IntAct, DIP and HPIDB 1/459 ¼ 0.2% 1/2 ¼ 50.0%
Domain–domain interaction 3did, Pfam 1/459 ¼ 0.2% 1/5 ¼ 20.0%
Domain–motif interaction 3did, Pfam 10/459 ¼ 2.2% 10/161 ¼ 6.2%
PSOPIA Human PPIs 2/459 ¼ 0.4% 2/45 ¼ 4.4%
DXECPPI Human PPIs 67/459 ¼ 14.6% 67/638 ¼ 10.5%

aPSOPIA and DXECPPI are ML-based predictors trained on human PPIs. The default prediction threshold values of PSOPIA and DXECPPI defined by the corresponding

servers are used to decide whether submitted sequence pairs interact or not.
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Network attributes significantly improved the
performance of plant–pathogen PPI prediction

Owing to the complexity of Arabidopsis–pathogen PPIs, simple
sequence encoding alone is hard to cover the complete biologic-
ally meaningful features. We attempted to integrate novel net-
work topology attributes into the sequence-based prediction
model, as previous studies have shown that network attributes
could distinguish host targets from other proteins [46]. In add-
ition to incorporating several routine network attributes (e.g. de-
gree and betweenness), we would like to emphasize that some
novel network distance-based features, which have never been
used in predicting inter-species PPIs, were adopted in this work.
These new features include the distance to known targets, dis-
tance to known R-proteins and distance to predicted R-proteins.
To investigate the influence of network attributes on the per-
formance, we compared sequenceþnetwork with sequence
encoding alone based on the RF algorithm. As shown in
Figure 3, Supplementary Tables S2 and S3, the auPRC values of
sequenceþnetwork encoding in the 10-fold cross-validation
test are 0.709, 0.764, 0.784 and 0.818 for Ara-Psy, Ara-Hpa, Ara-
Gor and Ara-all_pathogens, while the corresponding values of
sequence-based encoding are 0.634, 0.690, 0.734 and 0.776. In
general, the performance of sequenceþnetwork encoding was
significantly higher than that of the sequence-based encoding,
and the corresponding P-values inferred from one-tailed t-test
are 4.6e-10, 1.1e-10, 1.0e-07 and 8.4e-11 for Ara-Psy, Ara-Hpa,
Ara-Gor and Ara-all_pathogens, respectively. Regarding the inde-
pendent test, the auRPC values of sequenceþnetwork were
also consistently better than the sequence-based encoding

(Figure 4). These results clearly show that the network attri-
butes could substantially improve the Arabidopsis–pathogen PPI
prediction performance.

To explain the effectiveness of network attributes, we ana-
lyzed all the network features on the known inter-species PPIs
between Arabidopsis and the three pathogens. First, the raw
value of each feature was normalized by Z-score (Z-score ¼
(x-m)/r, where x is the raw value, m is the mean value of the fea-
ture and r is the corresponding standard deviation.). Then, the
mean normalized values of each feature in positive, and nega-
tive samples were used to plot a radar diagram (Supplementary
Figure S2). Indeed, these network attributes clearly differ be-
tween positive and negative samples. Network attributes such
as degree, betweenness, closeness, transitivity and PageRank in
positive samples are larger than those in negative samples,
while the distances to known targets and R-proteins show op-
posite trend. We further examined four features (i.e. degree,
betweenness, average distance to known targets and average
distance to known R-proteins) on pathogen-specific PPI data
sets (Figure 5). The difference between positive and negative
samples is consistent on Ara-Psy, Ara-Hpa, Ara-Gor and Ara-all_-
pathogens data sets. Based on the above analyses, several poten-
tial patterns in Arabidopsis–pathogen PPIs could be summarized.
First, the higher degree of known targets in positive samples
means that effector proteins tend to attack hubs in host PPI net-
work. It is efficient for pathogens to attack hubs which often
play important biological functions. Second, the distances to
known targets of an Arabidopsis protein in positive samples is
shorter than those of an Arabidopsis protein in negative sam-
ples, indicating effector targets tend to be clustered together in

Figure 3. PR curves illustrating the performance of different models on the 10-fold cross-validation test. Panels A, B, C and D represent the results from Ara-Psy, Ara-

Hpa, Ara-Gor and Ara-all_pathogens, respectively. The corresponding P-values were calculated through one-tailed t-test.
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the network. This observation is also in accordance with our
previous study [46]. Third, the distance to R-proteins can be
used as a good indicator for distinguishing real targets from
other Arabidopsis proteins because R-proteins can bind effectors
directly or monitor the interaction between effectors and
targets.

RF outperformed other popular ML algorithms in
predicting Arabidopsis–pathogen PPIs

To validate that RF is an appropriate ML algorithm for building
the prediction models in this work, we compared RF with other
ML algorithms on Ara-all_pathogens data set. Here, we first
tested the performance of different ML algorithms based on the
sequenceþnetwork encoding in the 10-fold cross-validation
test (Supplementary Figure S3A). We found that RF
(auPRC¼ 0.818) achieved the best performance, followed by
AdaBoost (auPRC¼ 0.774), SVM (auPRC¼ 0.767), KNN
(auPRC¼ 0.760), LR (auPRC¼ 0.677) and NB (auPRC¼ 0.643).
Similar performance ranking was observed in the independent
test (Supplementary Figure S3B). We also compared the per-
formance of different ML algorithms trained with sequence-
based encodings alone. Again, RF was suggested to be the
best algorithm in both the 10-fold cross-validation test
(Supplementary Figure S3C) and independent test
(Supplementary Figure S3D). Altogether, RF was the best ML al-
gorithm in predicting Arabidopsis–pathogens PPIs, and it was
therefore used for the final model construction. Regarding the
future development, the ensemble strategy by integrating dif-
ferent ML algorithms may be used to build a better predictor.
Moreover, the application of deep learning algorithms [72] could
also boost the prediction of Arabidopsis–pathogen PPIs.

The implementation of InterSPPI

To facilitate the research community, we developed an online
web server named InterSPPI (Inter-Species Protein–Protein
Interaction predictor, http://systbio.cau.edu.cn/intersppi/index.
php) to predict Arabidopsis–pathogen PPIs. The standalone ver-
sion of InterSPPI is also downloadable at the same Web address.
The prediction model of InterSPPI was built based on all
Arabidopsis–pathogen PPIs. The prediction cutoff was chosen
when the precision was 70% and the corresponding specificity
was 97%. Users could submit pathogen protein sequences and
Arabidopsis TAIR IDs to InterSPPI, and then InterSPPI will auto-
matically calculate the possibility of interaction between two
query proteins. We hope the web server could help to predict
and prioritize Arabidopsis–pathogen PPIs for experimental scien-
tists and therefore could further enhance the understanding of
the biological mechanisms of pathogen infection and plant
immunity.

Cross-species prediction showing the extrapolation of
the models based on individual pathogens

To systematically assess our method, we further examined
whether a model trained on one Arabidopsis–pathogen sys-
tem could predict inter-species PPIs between Arabidopsis and
other pathogens. By procedures, we arbitrarily selected the
PPI predictor between Arabidopsis and one of three patho-
gens, and assigned all of the inter-species PPIs related to the
two remaining pathogens as the test set. As shown in
Supplementary Table S4, the auRPC of the sequenceþnet-
work encoding is always larger than 0.6 for each cross-
species test, indicating its robust cross-species prediction
performance. Moreover, the sequenceþnetwork models also

Figure 4. PR curves illustrating the performance of different models on the independent test. Panels A, B, C and D represent the results from Ara-Psy, Ara-Hpa, Ara-Gor

and Ara-all_pathogens, respectively. The corresponding P-values were calculated through one-tailed t-test.
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consistently outperform sequence-based models in these
cross-species tests (Supplementary Table S4). The auPRC of
sequenceþnetwork is increased by an average of 0.16 com-
pared with sequence-based encoding. These results indicate
that the sequenceþnetwork encoding used by the InterSPPI
server is suitable for predicting plant–pathogen PPIs across
various pathogen species.

Proteome-wide prediction of Arabidopsis–pathogen PPIs

To have a global view of inter-species PPIs for Ara-Psy, Ara-Hpa
and Ara-Gor, the pathogen-specific prediction model was used
to scan all potential PPIs between Arabidopsis and the corres-
ponding pathogen. The cutoff of the RF prediction score was set
when the precision is 70%. As listed in Supplementary Table S5,
there are 2318, 2260 and 9520 PPIs predicted for Ara-Psy, Ara-Hpa

Figure 5. The difference in representative network attributes between positive and negative samples. The cumulative distributions for different network attributes

were plotted for comparison.
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and Ara-Gor, respectively. To further test the reliability of our
identified PPIs, we conducted GO enrichment analysis through
g:Profiler [73] on all newly identified Arabidopsis target proteins.
As shown in Supplementary Figure S4, defense-related BPs,
such as ‘regulation of defense response (GO:0031347)’ and ‘re-
spond to chitin (GO:0010200)’, and hormonal regulation-related
terms, including ‘respond to salicylic acid (GO:0009751)’, ‘re-
sponse to gibberellin (GO:0009739)’, ‘response to ethylene
(GO:0009723)’ and ‘response to chitin (GO:0010200)’, are enriched
among these newly identified targets. Previous studies have al-
ready reported that these defense processes and hormones are
important for plants to defend themselves against pathogens
[74, 75]. Therefore, these newly identified PPIs deserve further
experimental validation.

GO similarity information for Arabidopsis–pathogen
PPI prediction

It has been well accepted that two proteins sharing similar func-
tion or participating in the same process are more likely to inter-
act [76], and this concept has been successfully applied in PPI
prediction. It has also been established that an effector may
mimic the interaction way between the host targets and their en-
dogenous interaction partners. Therefore, the GO similarity be-
tween an effector and the corresponding host target, and that
between the effector and the target’s endogenous interaction
partners were evaluated. Because the GO information of Hpa and
Gor proteins was missing to a large extent, we only investigated
the performance of the GO similarity information on Ara-Psy. The
performance of the 10-fold cross-validation test was shown in
Supplementary Figure S5. As expected, the auPRC value of the in-
dividual GO similarity model is only 0.314, indicating that the GO
similarity model alone is far from practical application. By inte-
grating GO similarity information with the existing se-
quenceþnetwork encoding, the auPRC value only marginally
increases by 0.008, suggesting that the current GO annotation
encoding scheme is not useful for improving the prediction per-
formance. Moreover, we also note that the missing rate of GO an-
notation in Psy is still about 60%. A higher coverage of GO
annotation information should be necessary to further explore
the real application of GO similarity-based features. Taking the
above limitations into account, the GO similarity information
was not integrated into the final prediction model.

Gene expression features for Arabidopsis–pathogen
PPI prediction

Transcriptional reprogramming is heavily involved in plant de-
fense responses to pathogens. Therefore, the differential gene
expression patterns of plant proteins between the infection and
control conditions can be used as an indicator of plant–patho-
gen PPIs. In this work, we took the Ara-Psy system, where the
most comprehensive time-series gene expression data
(GSE56094) was available, as the example to test whether the
gene expression information could improve the prediction per-
formance of Ara-Psy PPIs or not. As we can see from
Supplementary Figure S5, the auPRC value of the gene
expression-based model is 0.521, which is much lower than
those of individual sequence-based encoding schemes or net-
work attribute-based encoding. Moreover, when we integrated
the gene expression model to the sequenceþnetwork model, it
could not improve the prediction performance. We note that
current gene expression data detect the expression changes of

Arabidopsis proteins only, while the expression data for patho-
gen proteins are missing. Thus, the direct co-expression pattern
between pathogen proteins and host targets cannot be estab-
lished. To obtain a comprehensive understanding of plant–
pathogen PPIs, the gene expression changes in the correspond-
ing plant and pathogen during infection should be monitored
simultaneously. With the rapid development of the next-
generation sequencing technologies, dual RNA-Seq can be used
for such task, and its application in predicting PPIs from other
host–pathogen system has been initiated [77]. We anticipate the
advance of dual RNA-Seq will eventually provide important data
for predicting plant–pathogen PPIs in the future.

Conclusions

Plant–pathogen PPI prediction is an important research topic,
which will significantly promote methodological innovation for
studying the PPIs between two different organisms and
strengthen the understanding of plant pathology and plant im-
munity mechanisms. Here, we summarize several key points
regarding current investigation on plant–pathogen PPI predic-
tion. (1) Compared with the widely investigated human–patho-
gen (e.g. human–virus) PPI prediction, the plant–pathogen PPI
prediction is rarely addressed. Recently, the accumulation of ex-
perimentally verified plant–pathogen PPI data has provided an
unprecedented opportunity for building plant–pathogen PPI
predictor. (2) Probably owing to the dissimilarity between plant–
pathogen inter-species PPIs and intra-species PPIs, traditional
PPI prediction methods such as interolog, DDI and DMI failed to
effectively infer plant–pathogen PPIs. (3) Our results showed
that the combination of sequence and network encoding
schemes could lead to an improved ML-based predictor with
reasonable performance. (4) Our survey also showed some
popular features (e.g. GO similarity and gene expression) are not
as useful as they worked in human–pathogen PPI predictions,
indicating more ad hoc features for predicting plant–pathogen
PPIs are continuously required. Regarding the future method
development of plant–pathogen PPI predictions, several tech-
nical advances would be beneficial to establish a better pre-
dictor. First, with the rapid development of interactomics
studies, more and more experimentally verified inter-species
PPIs will be available in the near future, which will provide
more templates for conventional PPI prediction methods as well
as provide more training data to develop ML-based predictors.
Second, dual RNA-Seq can detect the gene expression changes
simultaneously in both the host and pathogen, and therefore
this technique enables the measurement of the co-expression
between an effector and its host targets, which would be helpful
for improving inter-species PPI prediction. Last but not the least,
deep learning technique has demonstrated excellent perform-
ance in various bioinformatics tasks including gene expression
regulation and protein classification, and this technique may
also be used to predict inter-species PPIs. Taken together, our
results indicate that integration of sequence-based features and
network-derived features could result in the improved predic-
tion of Arabidopsis–pathogen PPIs, signifying the importance of
the integrative feature design that combines heterogeneous bio-
logical information to predict inter-species PPIs. In the future,
both the accumulation of experimental data and novel predic-
tion methodology would significantly contribute to the im-
proved prediction of inter-species PPIs between plants and
pathogens.
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Key Points

• Compared with the widely investigated human–patho-
gen PPI predictions, the plant–pathogen PPI prediction
is rarely addressed. The accumulation of experimen-
tally verified plant–pathogen PPI data has provided an
unprecedented opportunity for building plant–pathogen
PPI predictor.

• Probably owing to the dissimilarity between plant–
pathogen inter-species PPIs and intra-species PPIs, trad-
itional PPI prediction methods such as interolog, DDI
and DMI failed to effectively infer plant–pathogen PPIs.

• The integration of sequence and network encoding
schemes could lead to an improved ML-based predictor
with reasonable performance. We have implemented
the proposed integration method on a webserver
termed as InterSPPI.

• Some popular features (e.g. GO similarity and gene ex-
pression) are not as useful as they worked in human-
pathogen PPI predictions, indicating more ad hoc fea-
tures for predicting plant–pathogen PPIs are continu-
ously required.
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