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Pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) are two main plant immune responses to counter
pathogen invasion. Genome-wide gene network organizing principles leading to quantitative differences between PTI and ETI have
remained elusive. We combined an advanced machine learning method and modular network analysis to systematically characterize
the organizing principles of Arabidopsis (Arabidopsis thaliana) PTI and ETI at three network resolutions. At the single network node/
edge level, we ranked genes and gene interactions based on their ability to distinguish immune response from normal growth and
successfully identified many immune-related genes associated with PTI and ETI. Topological analysis revealed that the top-ranked gene
interactions tend to link network modules. At the subnetwork level, we identified a subnetwork shared by PTI and ETI encompassing
1,159 genes and 1,289 interactions. This subnetwork is enriched in interactions linking network modules and is also a hotspot of attack
by pathogen effectors. The subnetwork likely represents a core component in the coordination of multiple biological processes to favor
defense over development. Finally, we constructed modular network models for PTI and ETI to explain the quantitative differences in
the global network architecture. Our results indicate that the defense modules in ETI are organized into relatively independent
structures, explaining the robustness of ETI to genetic mutations and effector attacks. Taken together, the multiscale comparisons of
PTI and ETI provide a systems biology perspective on plant immunity and emphasize coordination among network modules to
establish a robust immune response.

Plants have evolved a sophisticated immune system
that enables each cell to monitor every possible destruc-
tive invasion by microbe and to mount an appropriate
defense response when necessary (Spoel and Dong,
2012). Pattern-triggered immunity (PTI) and effector-
triggered immunity (ETI) are two primary immune de-
fense modes in plants (Jones and Dangl, 2006). In PTI, the
immune response is triggered when pattern-recognition
receptors detect specific molecular patterns from patho-
gens, also known as pathogen-associated molecular
patterns (PAMPs). PAMPs, such as bacterial flagellin,
bacterial ELONGATION FACTOR TU (EF-Tu), lipopoly-
saccharides, and peptidoglycans, are essential compo-
nents of many pathogens but are lacking in plant cells.
Thus, PAMPs are ideal molecular markers for detecting
pathogen invasion. Pathogens can secrete virulence pro-
teins called effectors into host cells to subvert the PTI
process. Effectors usually mimic the biochemical function
of eukaryotic enzymes, such as phosphatases, proteases,
and ubiquitin ligases, to efficiently block immune

signaling pathways at a low dosage (Abramovitch et al.,
2006). ETI coevolved to monitor the presence of pathogen
effectors (Chisholm et al., 2006; Jones and Dangl, 2006). In
contrast to PAMPs, effectors are directly or indirectly
detected by plant resistant (R) proteins in ETI, usually
accompanied by a hypersensitive cell death response.
After the initiation of PTI or ETI, extensive transcriptional
reprogramming occurs, one of the most remarkable
phenomena in the plant immune response (Moore et al.,
2011).

In both PTI and ETI, the downstream immune response
must be tightly controlled by gene networks to balance
resource allocation between normal growth and an ef-
fective immune response to inhibit pathogen colonization.
However, the difference in the downstream immune re-
sponses of PTI and ETI remain largely unknown (Dodds
and Rathjen, 2010). Genome-wide microarray studies
have demonstrated that differences in the Arabidopsis
(Arabidopsis thaliana) transcriptome between PTI and ETI
are largely quantitative (Tao et al., 2003; Truman et al.,
2006). It has been proposed that ETI is faster and stronger
than PTI and that the signaling network components of
PTI and ETI are similar (Thomma et al., 2011). However,
some studies have also suggested that distinct defense
regulation mechanisms exist between PTI and ETI (He
et al., 2006; Gao et al., 2013), while cross regulation between
PTI and ETI has also been observed (Zhang et al., 2012).

Many immune-related genes involved in PTI or ETI
have been identified using genetic screens in com-
bination with biochemistry and molecular biology
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methods. For example, the ArabidopsisNONEXPRESSOR
PATHOGENESIS-RELATED GENES1 (NPR1) gene is a
master regulator of immune response mediated by sali-
cylic acid (SA; Dong, 2004). NPR1 is required for effective
defense in PTI and ETI and is also a crucial molecular
switch for the regulation of cell death in ETI. ENHANCED
DISEASE SUSCEPTIBILITY1 (EDS1), a positive regulator
of basal resistance, is required for the triggering of ETI by
Toll-Interleukin-1 (Toll-IL-1) receptor-nucleotide binding-
leucine-rich repeat type R proteins (Wiermer et al., 2005).
Among transcription factors (TFs), WRKY family mem-
bers play pivotal roles (Pandey and Somssich, 2009). A
heat shock factor-like TF, TRANSLOCON1-BINDING
TRANSCRIPTION FACTOR (TBF1), was recently iden-
tified as a major TF that controls transcriptional reprog-
ramming in PTI and ETI to favor defense over normal
growth (Pajerowska-Mukhtar et al., 2012). Several pio-
neering studies explored how robust immunity is ach-
ieved in PTI and ETI based on these well-known key
immune-related genes (Tsuda et al., 2009; Sato et al.,
2010; Naseem et al., 2012; Kim et al., 2014). For example,
leveraging aDELAYEDDEHISCENCE2 (dde2)/ETHYLENE
INSENSITIVE2 (ein2)/PHYTOALEXIN DEFICIENT4
(pad4)/SALICYLIC ACID INDUCTION DEFICIENT2
(sid2)-quadruple Arabidopsis mutant, Tsuda et al. (2009)
found that immune signaling pathways tend to be syn-
ergistic in PTI, but compensatory in ETI. The genes from
different signaling pathways tend to positively interact to
amplify immune signaling in PTI, whereas in ETI the
failure of one signaling pathway can be compensated by
other redundant signaling pathways (Tsuda et al., 2009;
Dodds and Rathjen, 2010). In 2010, Sato et al. (2010)
performed network modeling and proposed a sector
switching model to explain the regulatory relationships
among 22 Arabidopsis immune-related genes. In this
model, negative regulatory relationships among signaling
pathways in ETI were derived, which are favorable to the
establishment of a robust ETI signaling network against
pathogen effectors. For instance, the perturbation of one
pathway caused by effectors can result in the switching
on (i.e. high activation) of the other pathways (Sato et al.,
2010). To examine hormone crosstalk in ETI and PTI,
network modeling was used to analyze a phytohormone-
centric regulatory network containing 105 nodes (Naseem
et al., 2012). The aforementioned studies have provided
invaluable insight into differences in immune regula-
tion. However, due to the limited network coverage
in these studies, a complete systemic understanding of
how immune-related genes coordinate with each other
within gene networks and collectively lead to different
PTI and ETI phenotypes has not been reached (Dodds
and Rathjen, 2010).
Because thousands of genes can be differentially

expressed after an immune response is activated, routine
analyses based merely on genome-wide gene expres-
sion profiles are challenging. Although simple enrichment
analysis can provide abundant information regarding
which pathways are dysregulated, the connections among
dysregulated pathways are usually not apparent and are
highly dependent on interpretation by researchers. As a

result, researchers must analyze the identified pathways
individually and may lose the global perspective in
understanding how multiple pathways coordinate with
each other and ultimately lead to different PTI and ETI
phenotypes. Breakthroughs in modular cellular network
analyses and machine learning methods can be very
useful to dissect behaviors of the immune-related gene
network. Conceptually, many studies have suggested that
cellular networks are modular (Barabási and Oltvai, 2004;
Qi and Ge, 2006) and can be decomposed into coupled
functional units or modules. The genes within one
module are usually coregulated to perform common
functions and contain relatively more dense intercon-
nections than genes in different modules. The modularity
of cellular networks provides a feasible entry point to
simultaneously analyze the complicated behaviors of
many genes. This concept is helpful in understanding
plant development (He et al., 2010; Bassel et al., 2011b),
predicting gene functions (Heyndrickx and Vandepoele,
2012; Tzfadia et al., 2012), and comparing stress responses
(Shaik and Ramakrishna, 2013). Technically, machine-
learning algorithms are very good at extracting infor-
mation from a large amount of data in an automated
way. State-of-the-art machine-learning methods have
been used to successfully identify stress-responsive genes
(Ma et al., 2014; Shaik and Ramakrishna, 2014) and
development-related gene associations (Bassel et al.,
2011a) from large-scale plant gene expression data.
Recently, Dutkowski and Ideker (2011) proposed a new
machine-learning ranking algorithm called the network-
guided forest (NGF). NGF was developed from Random
Forest (RF; Breiman, 2001), a popular machine-learning
algorithm that uses many slightly different decision
trees to infer the relationship between input features and
class labels. Because only a randomly selected subset of
training samples and input features are used to build each
decision tree, RF is robust to outliers and can also yield
high prediction accuracy (Touw et al., 2013). In the NGF,
the molecular network is further introduced into RF to
guide the growth of each decision tree. For example,
by jointly using gene expression states and molecular
network information as input to build the classifica-
tion model, NGF can identify more cancer susceptibility
genes in cancer stratification compared with conven-
tional methods that only consider gene expression dif-
ferences (Dutkowski and Ideker, 2011).

In this study, we developed an integrative network
analysis framework that uses a machine-learning algo-
rithm and modular network analysis to investigate the
shared and distinct organization of Arabidopsis gene
networks in response to PTI and ETI. First, we assembled
an integrated gene network by combining different types
of gene association data. Using the PTI/ETI gene ex-
pression profiles and the integrated gene network as in-
put, the NGF algorithm was further used to identify key
genes/interactions involved in the immune response.
Moreover, we conducted multiresolution network anal-
yses to obtain a global view of the Arabidopsis immune
response. At the individual gene/interaction level,
we observed that the gene interactions involved in
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the immune response significantly tended to link differ-
ent network modules, highlighting the importance of
module coordination in plant defense. At the subnetwork
level, we identified a densely connected subnetwork
shared between PTI and ETI and confirmed the biological
importance of the shared subnetwork in the immune
response. At the whole network level, we used NGF-
based gene set enrichment analysis (GSEA; Mootha et al.,
2003) to further identify immune response-related net-
work modules and compared the organization structures
of these modules in PTI and ETI. Finally, we have made
our results accessible to the scientific community through
the development of a user-friendly interactive network
Web browser.

RESULTS

We designed an integrative multistep network analy-
sis framework to dissect the complex immune response
in Arabidopsis (see Fig. 1 for an overview). Herein, we
present the assembly of the integrated gene network, the
construction of the NGF model, and our major findings
at three network levels (individual gene/interaction,
subnetwork, and the whole network).

Assembly of an Integrated Gene Network of Arabidopsis

We assembled an integrated gene network by combin-
ing four types of gene association data (Supplemental Fig.
S1), including (1) experimental protein-protein interactions

(PPIs), (2) confirmed protein-DNA binding data, (3) TF
and target coexpression relationships inferred from
expression profiles under two physiological conditions
(development and abiotic stress), and (4) TF and target
chromatin comodification (Marbach et al., 2012) infor-
mation inferred from genome-wide chromatin immuno-
precipitation (ChIP)-chip experiments of 13 modification
types (Supplemental Table S1). We selected these data
because they are representative of and highly comple-
mentary to gene regulation relationships (Walhout, 2006;
Marbach et al., 2012). To reduce false positives from these
high-throughput data, we adopted a series of scoring
strategies to remove unreliable gene association data
(for more details, see “Materials and Methods” and
Supplemental Figs. S1–S5).

Regarding the experimental PPI data, the reliability
of each PPI was measured using the scoring scheme
introduced by Lage et al. (2007), in which the network
topology information surrounding the interaction,
the number of publications supporting the interac-
tion, and the experimental scale of PPI determination
are combined to compute a probabilistic confidence score.
Seventy-seven PPIs with confidence scores less than 0.20
were removed (Supplemental Figs. S1 and S2). Because
gene association pairs tend to be involved in a common
biological process, the gene ontology (GO) annotation
similarity of gene pairs can also provide indirect evidence
of the reliability of PPIs. The retained PPI data yielded an
average GO annotation similarity score of 0.158, which
is significantly higher than that of a random network

Figure 1. Methodological overview of the integrative network analyses. The analyses consisted of five steps (from left to right).
First, multiple genomic data were collected to assembly an integrated gene network with approximately 11,000 nodes and
approximately 64,000 edges. Second, an NGF algorithm was used to combine gene expression data with the gene network to
rank the importance of the network components (genes and interactions) in PTI and ETI. Third, a shared subnetwork between
PTI and ETI was identified and validated using independent data. The global network organizations of PTI and ETI were
compared using modular network models. An interactive network Web browser was developed for the convenience of the
scientific community. AGI, Arabidopsis Genome Initiative number.
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(Supplemental Fig. S3). The average GO annotation
similarity of retained PPIs can stably increase with the
improvement of confidence score cutoff (Supplemental
Fig. S4). However, the number of retained PPIs also
decreases considerably when improving the cutoff
(Supplemental Fig. S4). Therefore, it is difficult to select
an optimal cutoff. Considering that experimental PPI
data are relatively insufficient in Arabidopsis, we only
used the cutoff of 0.20 to remove PPIs with very low
reliability scores.
We inferred three gene networks from gene expression

or chromatin modification data. First, two gene ex-
pression datasets collected during plant development
(Schmid et al., 2005) and the abiotic stress response
(Kilian et al., 2007) were used to construct two coex-
pression networks. The experimental conditions of the
two data sets represent two major themes in the life of
plants (development and adaptation to the environment).
The diverse treatments and rich data (more than 200
profiles for each data set) also make these data sets
suitable for inferring coexpression relationships. Second,
we constructed a gene chromatin comodification network
because particular chromatin states are preferentially as-
sociated with gene classes involved in development and
the response to pathogens (Luo and Lam, 2010). To
construct the network, we developed a modification
pattern similarity measurement to assess whether two
genes have similar chromatin states. Using the average
GO annotation similarity score of the filtered PPI data as
a reference, we further filtered the gene interactions in
the three networks to ensure that the average GO an-
notation similarity score of the remaining interactions in
these three networks was equal to 0.158. Finally, we only
retained inferred interactions in which at least one gene
was a TF.
We did not filter the experimentally confirmed

protein-DNA binding data. The above refinement
yielded five different networks, and the union set of
these five networks was computed to generate an in-
tegrated gene network encompassing approximately
50% of the Arabidopsis genome (11,155 nodes [in-
cluding 1,090 TFs] and 64,281 edges). To combine the
network data with immune response expression
profiles, we further removed from the network those
genes that were not designed on the Affymetrix Ara-
bidopsis ATH1 Genome Array. The retained network
(AraONE; Supplemental Table S2) used by NGF in-
cluded 9,862 genes and 57,487 interactions. The overlaps
among the five networks are presented in Supplemental
Figure S5.
Compared to the pure PPI network, AraONE has

better genome coverage and reflects multiple gene
associations in Arabidopsis. Although false positive
interactions may inevitably be present in AraONE,
our benchmark analysis demonstrates that the average
GO annotation similarity of AraONE is significantly
higher than that of a random gene interaction network
(Supplemental Fig. S3). Therefore, we argue that AraONE
is suitable for further network analyses.

Ranking Immune-Related Genes and Their Interactions
Using the NGF Algorithm

NGF uses many slightly different network-guided de-
cision trees that combine gene expression and gene net-
works simultaneously to yield an accurate classification
model. The NGF tree structure is suitable for modeling
complex gene expression combinatorial logic, such as
synergistic or antagonistic effects. NGF assigns an im-
portance score (IS) for each gene/interaction according
to its contribution to improving the model classification
accuracy.

We constructed two NGF models to classify PTI
versus the control (PTI group) and ETI versus the con-
trol (ETI group). To train the NGF models, we compiled
three Arabidopsis gene mRNA microarray data sets
corresponding to three different immune response sce-
narios (PTI, ETI, and control) from multiple public data-
bases (for additional details about the microarray data
sets and model building procedures, see “Materials and
Methods” and Supplemental Table S3). To evaluate and
refine the NGF results, we conducted a series of com-
putational experiments.

First, we assessed the prediction accuracy of NGF
through a 10-fold cross-validation test. Accuracy, which
represents the proportion of correctly predicted cases
under a default cutoff, and the area under the receiver
operating characteristics curve (AUC), which reflects the
average accuracy of the classification models under dif-
ferent cutoffs, were used. As shown in Table I, NGF
was highly accurate (accuracy = approximately 0.86 and
AUC = approximately 0.94) for both the PTI and ETI
groups. The performance was also validated on two in-
dependent data sets (Supplemental Table S4). Consider-
ing the randomness of NGF, we further examined the
reproducibility of the NGF ranking results. Accordingly,
we built 10 more NGF models with the same settings for
the PTI and ETI groups, respectively, and performed a
pairwise comparison between the models in the same
group. More than 80% of the genes were reproducibly
identified as significantly important immune-related
genes at multiple scales in both the PTI and ETI groups
(Supplemental Fig. S6). For gene interactions, more than
80% and approximately 70% were reproducible for the
PTI and ETI groups, respectively (Supplemental Fig. S6).
The relatively low reproducibility of the ETI group may
be attributable to less training sample data. However,
given the large number of gene interactions in AraONE,
the NGF interaction ranking results are very stable.

Finally, we permuted the training data labels and
rebuilt 100 null hypothesis models. We compared real
ISs with the ISs from null hypothesis by Student’s

Table I. Prediction performance of NGFa

NGF Model Accuracy AUC

PTI versus control 0.859 6 0.012 0.942 6 0.008
ETI versus control 0.857 6 0.014 0.934 6 0.011

aThe number of trees is 100.
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t test. Only those genes and interactions with statisti-
cally significant ISs were subjected to further analysis
(see “Materials and Methods”). Based on these compu-
tational tests and the statistical analysis, we are confident
of the reliability of the NGF ranking results.

For PTI and ETI group, there were 1,856 and 1,843
genes, respectively, identified as significantly important
(Bonferroni correction, Student’s t test, P , 0.05;
Supplemental Table S5). We list the top 30 genes with the
highest ISs in Tables II and III (Supplemental Table S6)
for further analyses. Of the top 30 genes, our approach
successfully identified 12 and 14 known immune-related
genes for PTI and ETI, respectively. We compared the
NGF gene-ranking results with differentially expressed
genes (DEGs). We defined the differential expression
change of a gene as the absolute value of the difference of
its average expression levels under two conditions (PTI/

ETI versus control). Many of the top 30 DEGs are also
involved in plant immunity (Supplemental Table S7). We
observed that the top-ranked genes based on NGF are
prone to differential expression in either PTI or ETI (Fig.
2, A and B). However, highly differential expression of a
gene is not necessary to obtain a high rank in the NGF
results. As shown in Figure 2, C and D, only two genes
of the top 30 DEGs are ranked as the top 30 significantly
important genes in the NGF. For both the PTI and
ETI groups, most of the top 30 DEGs have a low
network degree (#2) in AraONE (Supplemental Table S7).
This low degree might make these DEGs more difficult
to be introduced to decision trees. By contrast, some
immune-related genes with moderate expression changes
were assigned a high rank, such as the calcium-
dependent protein kinase (CPK) gene CPK1 (Coca and
San Segundo, 2010) in the PTI group and NPR1 in the

Table II. Top 30 genes in PTI versus control

Arabidopsis Genome

Initiative No.
Name Function in Plant Immunitya NGF IS

At1g68520 B-BOX DOMAIN PROTEIN14 (BBX14) SA-mediated signaling pathway 0.660
At2g02450 LOV1 Unknown 0.573
At4g23810 WRKY53 Coordinates with WRKY46 in basal resistance 0.453
At4g18880 HEAT SHOCK TRANSCRIPTION FACTORA4A Response to chitin; substrate of the MITOGEN-

ACTIVATED PROTEIN KINASE3 (MPK3)/MPK6
signaling

0.382

At4g01090 Unknown 0.379
At1g72610 GERMIN-LIKE PROTEIN GLP1 Unknown 0.377
At2g24570 WRKY17 Negative regulator of basal resistance 0.361
At5g18150 Unknown 0.346
At1g14370 AVRPPHB SUSCEPTIBLE1 -LIKE2 (PBL2) Cleaved by effector protein AvrPphB; pbl2 mutant

showed significantly reduced callose deposition in
22-amino acid motif of the bacterial flagellin (flg22)
and N-term of elongation factor with the first 18
amino acid residues treatment

0.340

At1g69770 CHROMOMETHYLASE3 Involved in defense response-related DNA methylation 0.303
At3g26085 Unknown 0.276
At3g46780 PLASTID TRANSCRIPTIONALLY ACTIVE16 Unknown 0.275
At5g04870 CPK1 Control onset of cell death triggered by RESISTANT TO

P. SYRINGAE2 and RESISTANCE TO P. SYRINGAE
PV MACULICOLA1 (RPM1)

0.271

At2g38470 WRKY33 Key transcriptional regulator of and hormonal
and metabolic responses to necrotroph

0.268

At1g34310 AUXIN RESPONSE FACTOR12 Unknown 0.259
At3g17700 CYCLIC NUCLEOTIDE GATED CHANNEL20 Regulation of plant-type hypersensitive response 0.257
At2g29100 GLU RECEPTOR2.9 Unknown 0.255
At5g05190 Unknown 0.255
At4g02410 LECTIN-LIKE PROTEIN KINASE1 Confers Arabidopsis pathogen resistance when

overexpressed
0.250

At2g33500 BBX12 Unknown 0.247
At5g25930 Unknown 0.245
At4g09570 CPK4 Directly phosphorylates WRKY8/WRKY28/WRKY48 0.244
At4g14540 NUCLEAR FACTOR Y, SUBUNIT B3 Unknown 0.243
At2g30250 WRKY25 Negative regulator of SA-mediated defense responses 0.238
At3g59060 PHYTOCHROME INTERACTING FACTOR 3-LIKE6 Unknown 0.235
At3g07040 RPM1 Resistance (R) gene 0.233
At1g35420 Unknown 0.229
At5g11060 KNOTTED1-LIKE HOMEOBOX GENE4 Unknown 0.228
At3g55250 PIGMENT DEFECTIVE329 Unknown 0.224
At1g75460 Unknown 0.222

aComplete functional annotation of each gene and the corresponding references are provided in Supplemental Table S6.

1190 Plant Physiol. Vol. 167, 2015

Dong et al.

 www.plant.org on February 27, 2015 - Published by www.plantphysiol.orgDownloaded from 
Copyright © 2015 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org/cgi/content/full/pp.114.254292/DC1
http://www.plantphysiol.org/cgi/content/full/pp.114.254292/DC1
http://www.plantphysiol.org/cgi/content/full/pp.114.254292/DC1
http://www.plantphysiol.org/cgi/content/full/pp.114.254292/DC1
http://www.plantphysiol.org/cgi/content/full/pp.114.254292/DC1
http://www.plantphysiol.org/
http://www.plant.org


ETI group, which might be neglected in traditional gene
differential expression analyses. Closer inspection of
these two genes in the network revealed that CPK1
and NPR1 are highly connected and that many of
their neighbors are DEGs. In fact, these DEGs also
include known immune-related genes, such as the
NPR1 neighborsGRX480,NON-INDUCIBLE IMMUNITY1
INTERACTING1, TGACG MOTIF-BINDING FACTOR4,
andWRKY25, and theCPK1 neighbor LYSINEHISTIDINE
TRANSPORTER1 (Supplemental Fig. S7). Although
CPK1 and NPR1 exhibit only moderate changes in
expression, the NGF algorithm combines their ex-
pression changes and network topologic features to

identify them as immune-related genes among thou-
sands of candidates.

In addition to assigning an IS for each gene, one
important feature of the NGF is that it can also yield an
IS for each interaction in the network. In total, 5,466 and
6,342 significantly important interactions (P , 0.05,
Bonferroni correction, Student’s t test; Supplemental
Table S5) corresponding to 3,304 and 3,629 genes were
identified by NGF from the PTI and ETI group, re-
spectively. Because most functional annotation systems
are gene-centric, the biological meaning of the identified
interactions is difficult to interpret. Because previous
studies have indicated that interactions connecting

Table III. Top 30 genes in ETI versus control

Arabidopsis Genome

Initiative No.
Name Function in Plant Immunitya NGF IS

At3g44720 AROGENATE DEHYDRATASE4 Regulation of the plant-type hypersensitive response 0.275
At3g57150 NAP57 Unknown 0.270
At5g46760 MYC2-RELATED BASIC HELIX-LOOP-HELIX

TRANSCRIPTION FACTOR
Mediates the JA response 0.215

At1g63100 Unknown 0.212
At2g02450 LOV1 Unknown 0.212
At2g13650 GOLGI NUCLEOTIDE SUGAR TRANSPORTER1

(GONST1)
gonst1 plants have a dwarfed phenotype and a

constitutive hypersensitive response with
elevated SA levels

0.199

At1g59590 ZCF37 Unknown 0.197
At2g30250 WRKY25 Negative regulator of SA-mediated defense responses 0.174
At1g14370 PBL2 Cleaved by effector protein AvrPphB; pbl2 mutant

exhibits significantly reduced callose deposition
upon flg22 and N-term of elongation factor with the
first 18 amino acid residues treatment

0.173

At5g52010 Unknown 0.173
At3g22780 CHINESE FOR “UGLY” (TSO1) Unknown 0.169
At3g59220 PIRIN1 Unknown 0.165
At4g18880 HEAT SHOCK TRANSCRIPTION FACTOR A4A Response to chitin; substrate of MPK3/MPK6 signaling 0.160
At3g56400 WRKY70 Convergence between SA and JA signaling 0.158
At1g67690 Unknown 0.155
At2g38470 WRKY33 Key transcriptional regulator of hormonal and

metabolic responses to necrotroph
0.149

At1g31190 MYO-INOSITOL MONOPHOSPHATASE LIKE1 Unknown 0.149
At5g20950 Unknown 0.147
At4g19030 NODULATION26-LIKE MAJOR INTRINSIC

PROTEIN1
Regulation of the defense response 0.146

At1g71260 WHY2 Defense response 0.146
At1g64280 NPR1 Master regulator of SA-mediated systemic

acquired resistance
0.145

At3g16870 GATA TRANSCRIPTION FACTOR17 Unknown 0.139
At1g29120 Unknown 0.138
At1g36310 Unknown 0.137
At1g17440 CYTOKININ-HYPERSENSITIVE1, ENHANCED

ETHYLENE RESPONSE4
Unknown 0.130

At3g48090 EDS1 Indispensable for immunity mediated by Toll-IL-1
receptor-nucleotide binding-Leu-rich repeat
receptors; acts redundantly with SA to
regulate R gene-mediated signaling

0.130

At4g29810 MITOGEN-ACTIVATED PROTEIN KINASE KINASE1 Negative regulation of the defense response 0.130
At1g28480 GLUTAREDOXIN (GRX480) Negative regulation of the defense response 0.129
At3g02910 Unknown 0.127
At3g10640 VACUOLAR PROTEIN SORTING60.1 Unknown 0.123

aComplete functional annotation of each gene and the corresponding references are provided in Supplemental Table S6.
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different cellular network modules tend to play an im-
portant role in specific biological processes (He et al.,
2010; Bassel et al., 2011b), we also examined the distri-
bution of the identified interactions in the context of
network modules. We first applied the Markov cluster
(MCL) algorithm (Enright et al., 2002) to detect densely
connected network modules in AraONE. A total of 633
modules (Supplemental Table S8) were identified, 47%
of which contained more than five genes. Second, the
intermodule to intramodule interaction ratio (MIR) of
significantly important interactions was calculated. In-
teractions in which the two genes belong to the same
module were denoted intramodule interactions; interac-
tions in which the two genes belong to different modules
were denoted intermodule interactions. The MIR of a set
of interactions was then defined as the number of inter-
module interactions divided by the number of intra-
module interactions. As a control, we randomly sampled
the same number of interactions identified by NGF from
AraONE. This procedure was repeated 1,000 times. The
MIRs for the PTI and ETI groups were much larger than

those of the corresponding control group (0.667 versus
0.344 and 0.587 versus 0.344, respectively; P , 10–100,
Student’s t test; Fig. 2, E and F), and the MIR values
increased with a more stringent IS cutoff (Fig. 2, E and
F). This observation indicates that intermodule interac-
tions were assigned relatively high ISs, suggesting that
genes that distinguish the immune response and control
samples usually came from multiple network modules
instead of being enriched within one module. This ob-
servation may partly reflect the widespread gene expres-
sion changes in the plant immune response, which
involves multiple biological processes (Wang et al., 2011b).
The plant immunity-related functional roles of the signifi-
cantly important intermodule interactions (Supplemental
Table S5) merit further experimental validation.

The Shared Subnetwork between PTI and ETI Is Enriched
with Effector Targets

To explore the shared network components between
PTI and ETI, we computed the intersection of significantly

Figure 2. Comparison of NGF with differential expression analysis and characterization of the topological properties of sig-
nificantly important gene interactions. A, Change (absolute value) of gene expression in the PTI group. B, Change (absolute
value) of gene expression in the ETI group. C, NGF ISs of genes in the PTI group. D, NGF ISs of genes in the ETI group. The top
30 DEGs (green) and the top 30 genes with the highest NGF ISs (purple) are shown. The genes included in the top 30 genes of
both the DEGs and the NGF results are indicated in orange. Overall, the top 30 genes ranked by NGF tend to be differentially
expressed, but some immune-related genes even with moderate expression alterations, such as CPK1 and NPR1 (red), are also
discriminated from the noisy background as a top 30 gene by NGF. The genes are ordered along the x axis according to their
Arabidopsis Genome Initiative (AGI) numbers. In both the PTI (E) and ETI (F) groups, the significantly important gene inter-
actions identified by NGF tend to link different network modules. This phenomenon is more obvious when the IS cutoff is
increased.
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important interactions in the two processes. The resulting
subnetwork includes 1,156 genes and 1,289 interactions
(Fig. 3A), of which 43.9% (566/1,289), 1.5% (20/1,289),
0.5% (6/1,289), 52.0% (671/1,289), and 1.2% (16/1,289)
were exclusively from PPI data, protein-DNA binding
data, gene chromatin comodification data, developmental
gene coexpression data, and abiotic response gene coex-
pression data, respectively. Nineteen of the 181 TFs in the
subnetwork belong to the WRKY family. Consistent with
the MIR analysis, many interactions in this subnetwork
tended to link modules (observed: 495/1,289; expected:
312/1,289; P = 2.20 3 10–16, Student’s t test). Rather than
forming many interrupted small subgraphs, most genes
are connected to a large subgraph encompassing 946
genes and 1,149 interactions (Supplemental Fig. S8). We
used a new gene function visualization method called
Enrichment Map (Merico et al., 2010) to characterize the
functional distribution of genes in the shared subnetwork
(Fig. 3B). In the Enrichment Map, each node represents
a gene set corresponding to a GO term enriched in the
subnetwork, and each weighted edge represents the
overlap between two gene sets. We observed that stress
response and development were two major themes on
the map, and regulations of defense and development
were linked by the term negative regulation of cellular
process. These two themes remained prominent even
after the interactions inferred from the coexpression data
were removed (Supplemental Fig. S9).
We further analyzed the distribution of SA response

genes and type III effector target genes in this sub-
network. SA is a primary plant hormone in resistance
to infection by biotrophic pathogens and participates
in both PTI and ETI. To examine the distribution of SA
response genes in this subnetwork, we used an inde-
pendent data set generated by Wang et al. (2006), in
which 2,288 genes were identified using a genome-wide
microarray after 24 h of SA treatment on Arabidopsis.
Note that the microarray data were not used to con-
struct NGF models. A total of 1,303 SA response
genes could be mapped on AraONE, 322 of which
were included in the shared subnetwork (P , 10–100,
hypergeometric test), indicating that this shared sub-
network is significantly enriched in the SA response.
Moreover, we also downloaded 165 putative effector
targets identified by Mukhtar et al. (2011) and mapped
them on AraONE. These targets were defined as
Arabidopsis proteins that physically interact with
pathogen effectors. A total of 128 target genes could
be mapped on AraONE, 49 of which were observed
in the shared subnetwork (Supplemental Table S9;
Supplemental Text S1), indicating that effector targets
are also enriched in the subnetwork (P = 6.44 3 10–15,
hypergeometric test). Taken together, we observed
that the subnetwork is highly enriched in the SA re-
sponse and also tend to include pathogen effector
targets. Therefore, this subnetwork may represent an
important part of the plant immune network shared by
PTI and ETI. However, the complete functional role
of this subnetwork in plant immunity remains to be
established through additional experiments.

Modular Network Models of PTI and ETI

To delineate the global architecture of the gene net-
works activated in PTI and ETI, we applied GSEA to
identify immune response-related network modules and
further constructed two modular network models. GSEA
is a nonparametric rank-based method in which infor-
mation from all members of a gene set is combined as a
whole to improve the signal-to-noise ratio. One prom-
inent advantage of GSEA is that it can detect modest but
significantly coordinated changes in a gene set that may
be missed by individual gene-based analyses, such as a
Student’s t test (Mootha et al., 2003). GSEAwas originally
introduced as a method to identify dysregulated path-
ways in microarray experiments but can also be used
with other data types with the same structure as gene
expression profiles. Here, we performed GSEA by
replacing gene expression changes with NGF scores (i.e.
NGF-based GSEA). Using the 100 null hypothesis models
as the background, we identified network modules sig-
nificantly enriched in genes with high ISs in the PTI or
ETI groups (for details, see “Materials and Methods”). A
total of 62 and 52 modules were identified by NGF-based
GSEA in the PTI and ETI groups (permutation test, em-
pirical P , 0.05; Supplemental Table S10), respectively,
and 25 modules were common between the two groups.
We further conducted GO functional annotations of these
modules using Cytoscape plugin BiNGO (Maere et al.,
2005; Saito et al., 2012). For convenience, we manually
classified these modules into five functional categories
according to their GO term annotations: signal trans-
duction, transcription regulation, hormone, defense
response, and growth or development. Those modules
without any category assignment or GO enrichment
were omitted from further analyses. Finally, we obtained
18 PTI-specific modules, 14 ETI-specific modules, and
19 common modules (Supplemental Table S11).

Moreover, we computed average logic state scores for
the genes in each module and interactions between any
two connected modules to characterize the combination
patterns of the gene expression changes in immune re-
sponse. In contrast to ISs, which were used to represent
the usefulness of a gene or interaction in successfully
distinguishing the immune response and control condi-
tions, logic state scores reflect the direction of gene ex-
pression change in the immune response relative to
control conditions. The logic state score of a gene was
derived from the decision rules learned by NGF models.
A positive/negative logic state score for a gene indicates
that the gene state is up-regulation/down-regulation
for the majority of decision rules ended as immune re-
sponse. The absolute value of this score is proportional to
the number of decision rules supporting the gene state.
Moreover, we also computed the logic state scores of
interactions that link different modules. For an interac-
tion, a positive logic state score means the logic states of
two interacting genes are identical, while a negative in-
teraction logic score denoted different gene logic states
between two interacting genes (for more details, see
“Materials and Methods” ).
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Figure 3. The shared subnetwork between PTI and ETI. A, The subnetwork is arranged in traditional pathway style using the
Cerebral plugin according to the confirmed subcellular location information of gene products from SUBA3. Forty-nine putative
effector targets (red) are enriched in this subnetwork (P = 6.44 3 10–15, hypergeometric test), and 19 WRKY family TFs (green
triangles) are included. B, Enrichment map of the shared subnetwork. Each node represents a gene set corresponding to a GO

1194 Plant Physiol. Vol. 167, 2015

Dong et al.

 www.plant.org on February 27, 2015 - Published by www.plantphysiol.orgDownloaded from 
Copyright © 2015 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org/
http://www.plant.org


The resulting modular network modes of PTI and
ETI are shown in Figure 4. By observing these two
modular network models, we found that protein phos-
phorylation modules were the most highly connected in
both the PTI and ETI models, suggesting that protein
phosphorylation is a core biological process linking other
functional modules in the plant immune response.
Closer scrutiny of the substructures of these two

models that only include the modules of signal trans-
duction and defense response categories yielded an
unexpected finding. In PTI, defense response modules
appear to be densely linked by a central protein
phosphorylation module, resulting in a cohesive clique
with prevalent positive logic interactions (Fig. 5A). By
contrast, defense response modules in ETI are divided
into multiple relatively independent parts and contain
only a few links through the central protein phos-
phorylation module (Fig. 5B). The advantage of such
module organization in ETI is that the perturbation of
one module affects only the activity of the neighboring
modules instead of spreading to the all defense response
modules. As proposed by Tsuda et al. (2009) based on
genetic analysis, the signaling pathways in PTI tend to
interact synergistically, whereas the signaling pathways
in ETI tend to be compensatory. Our findings are in line
with the observations of Tsuda et al. (2009) and Tsuda
and Katagiri (2010).

Module M63 Suggests a Potential Role of Chromatin
Dynamics in ETI

We observed a highly connected module (M63) specific
to the ETI model with an NGF-based GSEA empirical
P value of 2.773 10–3 (permutation test, empirical P value =
0.730 in PTI). M63 contains 1,030 genes and is the largest
module in AraONE. Although the most significant GO
term annotated by BiNGO was gene expression, other
significant terms such as DNA conformation change,
nucleosome assembly, ribonucleoprotein complex bio-
genesis, chromatin modification, DNA replication, and
DNA repair were also obtained. To summarize the bio-
logical themes in M63, we submitted M63 to the DAVID
Web server (Huang et al., 2009) to cluster redundant GO
annotations. Most of the enriched themes were related to
chromatin configuration (Supplemental Fig. S10), a highly
relevant process for gene expression that is an intrinsic
component of plant-bacteria interactions (Ma et al., 2011).
Considering the large size of M63, we further decom-
posed this module into four submodules (Supplemental
Fig. S11). Most of the genes in the largest submodule
(M63.1, size = 358) were connected to pseudouridine
synthase NAP57, Whirly family protein ATWHY2,
HISTONE DEACETYLASE A3 (HDA3), and HISTONE

DEACETYLASE 2C (HD2C). NAP57 is a component of
telomerase ribonucleoprotein and is required for telomere
maintenance (Kannan et al., 2008). ATWHY2 is a mito-
chondrial protein that is involved in organelle genome
repair (Cappadocia et al., 2010). HDA3 and HD2C are
two histone deacetylases that are involved in develop-
ment and the stress response (Wu et al., 2000; Luo et al.,
2012). Consistent with the NGF-based GSEA analysis, the
four genes were distributed at the top of the NGF rank
list. NAP57 and ATWHY2 were included in the top 30
genes by NGF in the ETI group (Table II). HDA3 and
HD2Cwere ranked as the 63rd and 47th genes. However,
the functions of these genes in plant immunity remain
unclear.

We further compared the average closeness cen-
trality (CC) of the genes in M63 with the genes in the
whole network. CC is a network topological parameter
that measures if a node is near the center of the entire
network. The average M63 CC values were signifi-
cantly higher than that of the whole network (P =
9.41 3 10–324, Student’s t test; Supplemental Fig.
S12). Therefore, M63 gene activities could quickly influ-
ence the entire network. Moreover, we observed a recently
identified epigenetic regulator in M63, ELONGATOR
COMPLEX SUBUNIT2, that is essential for rapid tran-
scriptional reprogramming in ETI (Wang et al., 2013).
Taken together, M63 implies a potential role of chromatin
dynamics in ETI, although further validation is required.

A Web Tool to Interactively Explore Modular
Network Models

To facilitate the exploration of these network models by
the scientific community, we developed a user-friendly
interactive networkWeb browser (http://systbio.cau.edu.
cn/pinet/home.php) based on the network visualization
framework sigma.js (http://sigmajs.org). This portal in-
cludes detailed gene composition information for each
module from two modular network models as well as the
shared subnetwork identified using NGF.

DISCUSSION

PTI and ETI are two major types of plant immunity;
the dissection of their shared and distinct aspects is
valuable for further understanding the evolution of plant
immunity and can provide important insight for breeding
new generations of disease-resistant crops. In this study,
we used a network-based analysis framework and the
machine-learning algorithm NGF to integrate heteroge-
neous but complementary high-throughput genomics
data to gain a systems-level understanding of how

Figure 3. (Continued.)
term enriched in the shared subnetwork, and each weighted edge represents the overlap between two gene sets. The node size
is proportional to the number of genes that belong to this GO term. The width of the edge is proportional to the size of the
overlapping gene sets. ET, Ethylene; ABA, abscisic acid.
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Figure 4. Modular network models of PTI and ETI. Each node represents a network module identified by NGF-based GSEA. The
circle nodes are modules common to the PTI and ETI models, and the triangle nodes are modules that are specific to the
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different parts of the plant immune network coordinate
with each other to lead to specific phenotypes.

NGF Can Effectively Combine Gene Network and
Expression Cues to Pinpoint Immune-Related Genes

We used NGF to assess the importance of genes and
interactions in the specific immune response. By con-
verting the selection of immune-related genes into a task
to classify the conditions of the expression profiles, NGF
automatically identified immune-related genes, and it
reveals advantages over some existing methods used in
plant systems biology. Compared with other differential
expression analyses based on machine-learning methods
(Shaik and Ramakrishna, 2014), the major innovation of
NGF is that it incorporates the gene network as a priori
knowledge to effectively narrow the hypothesis space of
candidate genes. In contrast to network-based methods
that rely on known functional genes to discover new
candidates (Lee et al., 2010; Ma et al., 2014), NGF can be
regarded as a de novo gene discovery algorithm, which is
particularly useful when only few genes involved in the
biological process of interest are known.
Many significantly important genes identified by

NGF are known immune-related genes. For example,
multiple WRKY family TFs were considered signifi-
cantly important genes by the NGF in the PTI group
(Table II), including WRKY53, WRKY17, WRKY33, and
WRKY25. WRKY53 was first identified as a senescence-
associated gene and subsequently screened out as a
member of the systemic acquired resistance signaling
network (Hinderhofer and Zentgraf, 2001; Wang et al.,
2006). This gene can interact with the jasmonic acid (JA)-
inducible protein EPITHIOSPECIFYING SENESCENCE
REGULATOR to mediate negative crosstalk between
pathogen resistance and senescence (Miao and Zentgraf,
2007). Recent genetic analysis has suggested that
WRKY53 positively regulates basal resistance by coor-
dinating with WRKY70 and WRKY46 (Hu et al., 2012).
By contrast, WRKY17, WRKY33, and WRKY25 are neg-
ative regulators of the defense response to Pseudomonas
syringae (Journot-Catalino et al., 2006; Zheng et al., 2006,
2007). CPK1 and CPK4 are also ranked in the top 30
significantly important immune-related genes in the PTI
group. A loss-of-function mutation of CPK1 increases
the susceptibility of Arabidopsis to pathogen infection
(Coca and San Segundo, 2010). CPK4 has been identified
as a key positive component in initial PTI signaling to
flg22. This protein directly phosphorylates WRKY8/
WRKY28/WRKY48 (Gao et al., 2013). In the ETI
group, NPR1 and EDS1 were identified by NGF
as the 20th and 25th most significantly important
genes, respectively. WRKY70, a convergence node for

JA-mediated and SA-mediated signals in plant de-
fense (Li et al., 2004), is also included in the list for
the ETI group.

Several of the top-ranked genes that have not previ-
ously been related to the plant immune response may be
candidates for further experimental validation. For ex-
ample, LONG VEGETATIVE PHASE1 (LOV1; At2g02450)
was ranked as one of the top 30 significantly important
immune-related genes in both the PTI and ETI groups.
LOV1 belongs to the NAC (for no apical meristem
[NAM], Arabidopsis transcription activation factor1-2
[ATAF1-2], and cup-shaped cotyledon2 [CUC2]) TF family,
of which some members have been found to be involved
in the defense response to pathogen infection (Bu et al.,
2008). LOV1 is a master regulator of flowering and cold
response (Yoo et al., 2007), and its overexpression in
switchgrass (Panicum virgatum) induces alterations lignin
content and cell wall composition (Xu et al., 2012). Plant
development and innate immunity are closely linked, and
previous studies have uncovered several genes that
can regulate both flowering time and plant immunity,
including HOPW1-1-INTERACTING3, NPR1, and Plant
U-box protein13 (Wang et al., 2011a; Li et al., 2012).
Therefore, we infer that LOV1 is an immune-related
candidate gene that warrants further characterization.
Taken together, these results demonstrate the power of
NGF for identifying key immune-related genes. Given
the increasing availability of genome, proteome, and
interactome data, we expect that NGF will be a useful
tool for modern plant research.

Identification of a Shared Subnetwork between
PTI and ETI

By comparing the significantly important gene inter-
actions between PTI and ETI, we identified a shared
subnetwork enriched in effector targets. The subnetwork
spans the extracellular region to the nucleus (Fig. 3A) and
includes many key immune-related genes, such as NPR1,
TBF1, PENETRATION3 (PEN3), BRASSINOSTEROID-
INSENSITIVE1-ASSOCIATED RECEPTOR KINASE
(BAK1), RPM1 INTERACTING PROTEIN4 (RIN4), and
HOMOLOGOF BEE2 INTERACTINGWITH IBH1 (HBI1).
PEN3 is an ATP-binding cassette transporter that
participates in defense against fungal and oomycete
pathogens (Clay et al., 2009). BAK1 is a master positive
regulator of PTI (Schwessinger et al., 2011). RIN4 is a
known target of multiple effectors (Jones and Dangl,
2006). HBI1 is a basic helix-loop-helix TF that mediates the
tradeoff between plant growth and the immune response
(Fan et al., 2014). Functional enrichment analysis indicated
that development and defense are the most prominent

Figure 4. (Continued.)
corresponding models. The width of the module interaction is proportional to the average interaction IS as assigned by NGF.
The modules and interactions are colored according to the average logic state score. The modules are presented according to
five functional categories. GTPase, GTP hydrolase. The detailed gene composition of the modules and their interactions are
available at http://systbio.cau.edu.cn/pinet/home.php.
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themes in this subnetwork. These two themes were also
observed in a conserved Arabidopsis PPI network
targeted by effectors of pathogens from three king-
doms of life (Weßling et al., 2014). This shared sub-
network between PTI and ETI might contribute to the
coordination of different biological processes by link-
ing together relatively separated network modules to
promote plants change their state from development to
defense. In addition, the enrichment of pathogen ef-
fector targets implies pathogens might exploit genes in
the subnetwork to impede plant immunity. In addition
to TBF1 and HBI1, we speculate that additional genes
in this subnetwork might function as regulators of the
tradeoff between development and defense.

A Relatively Independent Organization of Defense
Modules Distinguishes ETI from PTI

Two modular network models were constructed to
compare the global network architecture of PTI and
ETI. Protein phosphorylation was observed as a core
process linking other network modules in both the PTI
and ETI models. Reversible protein phosphorylation is a
crucial mechanism for regulating protein activity and is a
basic step in protein kinase-mediated signal transduction.
Signaling networks mediated by protein kinases have
been characterized as essential components of plant in-
nate immunity (Tena et al., 2011). For example, receptor
protein kinases are the main pattern recognition receptors

sensing diverse PAMPs in PTI. Mitogen-activated protein
kinase cascades were identified as defense response-
related signaling pathways that directly connect up-
stream immune signaling from receptor protein kinases
and downstream transcriptional reprogramming. More-
over, the CPK signaling pathway was also recently dis-
covered as another convergence point of the upstream
plant immune response and regulates ETI-related pro-
grammed cell death (Gao et al., 2013). In addition to
regulating the plant immune response, protein phos-
phorylation signaling networks participate widely in
other plant physiological processes, including response
to light, abiotic stress, hormone stimulus, and nutrient
deprivation (Stone and Walker, 1995). Therefore, it is
reasonable that protein phosphorylation nodes are lo-
cated in the center of these two immune response models
and link most of the modules from five functional cate-
gories (Fig. 4).

However, we observed defense response modules that
were organized into a relatively independent network
structure in ETI in contrast to the cohesive structure
observed in PTI (Fig. 5). The distinct defense module
organization in PTI and ETI may be attributable to dif-
ferent demands in plant-pathogen coevolution (Katagiri
and Tsuda, 2010). PTI is triggered by conserved PAMPs,
but many nonpathogenic microbes also carry PAMPs.
Plants must carefully balance the induction of strong
immune responses to clear pathogens and the prevention
of undue immune responses triggered by nonpathogenic
microbes. The interdependent relationships among defense

Figure 5. Organization of defense re-
sponse modules in PTI and ETI. A, The
defense response modules are orga-
nized into a compact clique with signal
transduction modules in PTI. Positive
combinations of logic states are preva-
lent among the modules. B, Defense
response modules are relatively inde-
pendent of each other, and different
parts of network models are mainly
linked by a protein phosphorylation
module. GTPase, GTP hydrolase. The
color scheme and the meaning of each
shape are the same as in Figure 4.
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modules in PTI would facilitate the gradual establish-
ment of a strong immune response when there are
persistent PAMP signals, which could prevent the side
effects of frequently activated immune responses trig-
gered by invasion signals from low-risk pathogen. By
contrast, the recognition of effectors by resistance pro-
teins is a high-risk signal that requires plants to quickly
adopt defense responses. The relatively independent
relationships among defense modules in ETI could be
the result of evolutionary demands for a rapid, robust
defense response.

Limitations and Future Work

Our results are only based on currently available
data and must be interpreted with caution. First, our
approach is limited by the availability and quality of
the molecular network. For example, we used an ad
hoc cutoff to filter experimental PPIs. Many gene inter-
actions were inferred from genomic data without confir-
mation, and only approximately one-half of Arabidopsis
coding genes are covered by our analysis. Imperfect data
quality and insufficient data coverage can result in errors.
For instance, interactions in AraONE most likely include
both direct and indirect gene regulations because many of
these interactions were inferred from omics data instead
of direct and detailed biochemical evidence. Thus, it is
very difficult to judge whether the network organizations
observed here are true characteristics of the underlying
gene regulatory architecture or reflections of gene func-
tional associations in the immune response. Second,
mRNA microarray data provide no information of the
regulation of immune-related genes by posttranslational
modifications. We believe that these problems will be
alleviated gradually with the development of more reli-
able computational algorithms (Lee et al., 2010) and high-
throughput experimental methods (Jones et al., 2014;
Lumba et al., 2014). Finally, NGF only distinguishes plant
immune responses as two conditions (on/off). However,
the plant immune response is a highly dynamic process.
Dynamic behavioral information about the immune reg-
ulatory network that could be crucial in discriminating
PTI and ETI is inevitably lost in a simple binary dis-
crimination of the plant immune response (Katagiri and
Tsuda, 2010). Integrating time course expression data
with module analysis will further decipher the regulators
and the core regulatory network that drives different PTI
and ETI expression kinetics.

MATERIALS AND METHODS

Data Collection and Processing

To assemble the integrated gene network, we: (1) compiled an experimental PPI
network from BioGrid, IntAct, and The Arabidopsis Information Resource (TAIR)
that included 6,640 proteins and 16,797 interactions; (2) downloaded protein-DNA
interactions annotated as confirmed from AGRIS (http://arabidopsis.med.ohio-
state.edu/) covering 720 genes and 762 interactions; (3) downloaded 237 and 298
preprocessed gene expression profiles from the Weigel World Web site (http://
www.weigelworld.org/), which are related to Arabidopsis (Arabidopsis thaliana)
development and the abiotic stress response, respectively; and (4) collected 13

types of chromatin modification data from ChIP-chip experiments (Supplemental
Table S1).

The ChIP-chip data for 13 chromatin modification types were processed using
TileMap (Ji and Wong, 2005) to detect modification regions in the genome. Similar
to the work of Marbach et al. (2012), chromatin modification information was
mapped to five regions of a gene to characterize the chromatin modification status.
These five regions were the 1-kb upstream region of the transcriptional start site,
the 59 untranslated region (UTR), the coding region, the 39 UTR, and the 1-kb
downstream region of the 39 UTR. For each type of chromatin modification, we
constructed a five-dimensional binary vector to determine if the above five regions
of a gene were modified. For example, [0, 1, 1, 0, 0] denotes that the 59 UTR and
coding region of a gene were modified by a specific chromatin modification. The
binary vectors of the 13 types of modification were concatenated into a 65-
dimensional vector to represent the chromatin status of a gene. Genome infor-
mation was downloaded from TAIR (http://www.arabidopsis.org).

To implement the NGF algorithm, Arabidopsis gene mRNA microarray
data (Affymetrix Arabidopsis ATH1 Genome Array) corresponding to three
different immune response scenarios (PTI, ETI, and control) were downloaded
from the National Center for Biotechnology Information Gene Expression
Omnibus, European Bioinformatics Institute ArrayExpress, and TAIR. Re-
garding the PTI data, 69 gene expression profiles were collected from Arabi-
dopsis after different bacterial PAMPs treatments, including flg22, EF-Tu, type
III secretion system protein HrpZ, lipopolysaccharide, and Pseudomonas
syringae pv DC3000 with a deficient type III secretion system. Regarding the
ETI data, we collected 36 gene expression profiles of Arabidopsis in response
to P. syringae species carrying the Avirulence (Avr) gene (effector genes
AvrRpm1 or AvrRpt2), which can elicit ETI in ecotype Columbia wild-type
Arabidopsis. The control data included 65 gene expression profiles gathered
from the corresponding control experiments for the above treatments. More
detailed information can be found in Supplemental Table S3. Raw data in
Affymetrix CEL format were processed using the robust multichip average
method with the affy package from Bioconductor (http://www.bioconductor.
org) and further transformed into z-scores to remove batch effects.

Filtering PPI Network

The reliability of a PPI was measured using the scoring scheme of Lage et al.
(2007). First, the network topology information surrounding the interaction
was used to compute a raw score (RS) between (–∞, 0):

RSðg1; g2Þ ¼ 2 ln½ðNS1 þ 1ÞðNS2 þ 1Þ� ð1Þ
where NS1 and NS2 denote the number of nonshared protein interaction
partners of proteins g1 and g2, respectively. The smaller number of shared PPI
partners results in a small value of RS. Second, the number of publications
supporting the interaction and the experimental scale of the PPI determina-
tions were combined to postprocess the RS as follows:

scoreðg1; g2Þ ¼ RS= ∑
N

i¼1
1=lnTi ð2Þ

normlized score ðg1; g2Þ ¼ scoreðg1; g2Þ2 scoremin

scoremax 2 scoremin
ð3Þ

where N is the number of different PubMed identifications corresponding to
publications in which this interaction is reported. Ti (throughput) is the number
of PPIs reported in publication i. Thus, if an interaction was only reported in a
high-throughput experiment, score(g1, g2) will be small. Finally, this score was
normalized to (0, 1) using Equation 3. To select a suitable cutoff for removing
unreliable PPIs, we plotted the distribution curve of the remaining PPI numbers
at different cutoffs (Supplemental Fig. S2). A visual determination of the elbow
was made, and the cutoff of 0.2 was chosen to remove PPIs with very low re-
liability scores.

Computing GO Term Annotation Similarity

First, the similarity of two GO terms was measured using the protocol
developed by Bradford et al. (2010), in which both the directed acyclic graph
structure of GO annotations and functional diversity of a gene were consid-
ered. The occurrence frequency p(c) of a GO term c was calculated as the
number of Arabidopsis genes annotated with that term divided by the total
number of genes annotated with any GO term. The probability of minimum of
subsume pms(c1, c2) between the two GO terms c1 and c2 was defined as the
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minimum of p(c) in all possible shared parent GO terms. Then, the similarity of
the two terms c1 and c2 was measured as –lnpms. Second, the GO annotation
similarity of genes g1 and g2 was measured according to the similarity of the GO
terms. The m GO terms associated with g1 and the n GO terms associated with g2
were used to construct anm3 n similarity matrix. The sum of the maximum term
similarity scores from each line, and each column was divided by m + n to give a
GO annotation similarity score between g1 and g2. In this process, we only con-
sidered the GO term biological_process and its child terms. Note that GO an-
notations were downloaded from TAIR 10 (http://www.arabidopsis.org/), and
only those terms with the evidence codes IDA, IPI, IMP, IGI, RCA, TAS, ISS, ISO,
ISA, and ISM were considered validated annotations.

Construction of Three Gene Networks Based on
Gene Expression Profiles and Gene Chromatin
Modification Data

We inferred three gene interaction networks (Supplemental Fig. S1) using
gene coexpression patterns in Arabidopsis development and the abiotic stress
response and the gene comodification patterns of the 13 chromatin modifi-
cation types.

The squared Spearman correlation coefficient was used to measure the
correlation of gene coexpression patterns because this coefficient has been
widely used and showed more accurate performance than Pearson correlation
coefficient in inferring TF-target relationships (Ma and Wang, 2012). To min-
imize the potential possibility of introducing bias to the NGF algorithm, we
avoided using immune response-related expression profiles to construct the
coexpression network.

We used a weighted binary vector-matching coefficient to measure the
similarity of chromatin modification between two genes as follows:

comodiðg1; g2Þ ¼
∑m∈ðM1∩M2ÞwðmÞ
∑m∈Mall

wðmÞ ð4Þ

wðmÞ ¼ logðN2 nm þ 0:5
nm þ 0:5

Þ ð5Þ

where m denotes a specific modification in the binary chromatin modification
vector, Mall represents all 65 of the different modifications in the vector, and
w(m) is the weight of m, which is calculated using Equation 5. N is the number
of genes in the genome, and nm is the number of genes with modification m.

Moreover, the cutoffs 0.70, 0.80, and 0.44 were used to filter the interactions
inferred from gene coexpression in development, gene coexpression in the
abiotic stress response, and chromatin comodification, respectively. Thus, the
average GO annotation similarity score of each filtered network was identical to
that of the retained PPI network. Finally, we only retained the coexpression/
comodification pairs in which at least one gene was a TF according to the TF
annotations of AGRIS.

NGF Algorithm

The NGF uses the gene expression profiles from two different conditions and the
gene interaction network as input to train a classification model that can predict the
phenotype of a given expression profile. NGF assigns a score called IS to each gene/
interaction according to its contribution to improve the classification accuracy. The
complete methodology is detailed in the work of Dutkowski and Ideker (2011). The
gene expression profiles of PTI, the control, and AraONE were used to train a PTI-
related NGF model, whereas the gene expression profiles of ETI, the control, and
AraONE were used to train an ETI-related NGF model. To generate one decision
tree, a subset of all expression profiles was first randomly sampled with replace-
ment to produce a new expression profile data set with the same size as the original
one. Next, a best predictive gene was selected from a randomly sampled gene
subset (size =

ffiffiffiffiffiffi
Ng

p
) as a root. Ng is the number of genes in AraONE. To guarantee

sufficient candidate genes for use in the next step, only genes with degree of at least
5 were used as root candidates. In the tree growth, the decision tree iteratively
partitioned gene expression profiles according to the expression level of the gene
(decision gene). In each step of tree growth, decision gene candidates were defined
as network neighbors of the genes that had been included in the decision path, and
a new decision gene was further selected as that with the highest IS(g) (see Eq. 6).
The tree growth was terminated until the statistical predictive power, IS(g) less than
0.02, no longer improved when a new gene was added. A total of 10,000 decision
trees were built to construct the NGF model. We implemented NGF using custom
Python scripts based on NetworkX (http://networkx.github.io/).

In the original NGF algorithm, the ISs of genes and interactions are mea-
sured using the average reduction of tree accuracy on out-of-bag samples. We
modified the original algorithm by using a faster method to calculate the ISs.
In brief, we used a reduction in the output sample variance due to the node
(gene) split in the decision tree to measure the importance of the gene, which is
defined as follows:

ISðgÞ ¼ varðTÞ2 nU
NT

varðUÞ2 nD
NT

varðDÞ ð6Þ

varðSÞ ¼ GiniðSÞ ¼ 12
�
nP
NS

�2

2

�
nN
NS

�2

ð7Þ

where var(T) is the variance of all of the samples as tested by split node g, var
(U) is the variance of the sample subset U in which the expression level of split
node g exceeds the threshold (up-regulated), and var(D) is the variance of
sample subset D in which the expression level of node g is lower than or equal
to the threshold (down-regulated). NT, nU, and nD are the sizes of the corre-
sponding sample sets. The Gini index was used to measure the sample vari-
ance as defined by Equation 7, in which nP and nN represent the number of
positive and negative samples in sample set S, respectively.

The ISs of the genes were further used to reversely infer the importance of
interactions. When gene g was added to the decision tree, all N interactions
between g and its parent nodes in the decision tree were assigned an IS equal
to IS(g)/N. If a gene or interaction was used more than once in a decision tree,
all of its ISs were summed. The ISs from all 10,000 decision trees in the NGF
model were further averaged to produce the final IS.

To estimate the statistical significance of ISs for genes and gene interactions,
we compared real ISs with those inferred from random conditions and
assigned a P value for each real IS. For example, in the PTI group, we first
randomly permuted the condition labels (i.e. PTI and control) of 69 PTI
microarray samples and 65 control microarray samples. Then, a null hy-
pothesis NGF model was constructed based on these permuted samples and
AraONE. We repeated this computation 100 times. For each real IS, a Stu-
dent’s t test was used to compare it with the corresponding 100 ISs from the
null hypothesis. A Bonferroni correction was used to correct the P values. A
gene or interaction with a corrected P , 0.05 for its IS was deemed signifi-
cantly important.

The classification performance of NGF was assessed through a 10-fold
cross-validation test. In brief, all of the positive samples (PTI/ETI) and neg-
ative samples (control) were first randomly divided into 10 subsets of the same
size, respectively. The ratio of positive to negative samples in each subset was
roughly the same as that of the original (i.e. 69:65 for the PTI group and 36:65
for the ETI group). Next, the first nine subsets were used to train a machine-
learning model, and the remaining one subset was used to test the perfor-
mance of the established model. This operation was repeated 10 times, in
which every subset was used in turn to test the model, to estimate the overall
performance of the NGF. To reduce the influence of small sample size on
performance stability, the 10-fold cross-validation test was repeated 10 times
using different data set partitions.

Extracting Decision Rules and Computing Interaction
Logic State Scores

Decision rules were extracted by traversing decision paths for PTI (ETI)
of all decision trees in the NGF model and further processed using three
operations to remove unreliable, inconsistent, and redundant rules: (1)
rules covered less than five samples were removed; (2) if there were
multiple highly similar rules, only one was retained; and (3) all contra-
dictory rules whose decision conditions were very similar but yield op-
posite outcomes were removed. The logic state score of a gene g is defined
as follows:

LGðgÞ ¼
nup
Nrule

2 0:5 ð8Þ

where nup is the number of decision rules where g is set as up-regulated. Nrule
is the total number of decision rules. The logic state sore of the interaction is
the following:

LIðg1; g2Þ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��LGðg1ÞLGðg2Þ��

q
ð9Þ

where a is 1 if LG(g1)LG(g2) is larger than 0; otherwise, a is –1.
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Detection of Network Modules

MCL was used to detect network modules for the following reasons. First, it
is robust to noisy biological network data (Vlasblom and Wodak, 2009) and has
been successfully used in previous plant molecular network research (Tzfadia
et al., 2012). Second, it has shown to be more accurate compared with other
algorithms (Nepusz et al., 2012). Third, it is scalable to the network with thou-
sands of nodes. The MCL algorithm (http://micans.org/mcl/) with default
parameters (granularity = 2 and edge weight = 1) was used to cluster AraONE,
and only network modules with a size of at least three genes were retained.

Identification and Functional Classification of
Significant Modules

The preliminary version of the GSEA algorithm (Mootha et al., 2003) was
implemented with custom code to identify network modules significantly
enriched with high IS genes in the PTI group (or the ETI group). Using the PTI
group as an example, the NGF-based GSEA was conducted as follow. In the
first step, all N genes in AraONE were arranged in descending order
according to their NGF ISs. In the second step, for a module with M genes, a
running sum was computed from the gene with the highest IS(g1) to that with

the lowest IS(gN). The running sum was defined as ∑
j

i¼1
si (i # j # N). si =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN2MÞ=Mp

if gi belongs to the module; otherwise, si = 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=ðN2MÞp

. In
the third step, an enrichment score (ES) of the module was defined as

max
i#j#N

∑
j

i¼1
si . To determine the statistical significance of the ESs, 100 random

NGF models were built on gene expression profiles whose phenotype labels
were randomly permuted. The above three computational procedures were
repeated on ISs from each random model. Then, the ESs of all modules from
all 100 random NGF models were pooled together to construct a background
distribution of ESs. The P value of each real ES was computed as the pro-
portion of the ES in the background distribution that was equal to or larger
than the real ES (Mootha et al., 2003). Modules with an empirical P , 0.05
were considered significant.

We performed a functional annotation of the significant modules using
BiNGO and classified them into five functional categories: (1) signal trans-
duction, (2) transcriptional regulation, (3) hormone, (4) defense response, and
(5) growth or development. Because there could be more than one enriched
functional term within a module, we only considered the most significant term
(i.e. the GO term with the lowest P value). The modules that were annotated
with terms containing the words signal transduction or phosphorylation were
partitioned into category 1; those that were annotated with terms including
regulation of transcription or RNA processing were partitioned into category
2; those that were annotated with hormone-related terms such as response to
auxin or ethylene-mediated signaling pathway or including known master
hormone regulators, such as NPR1 (Dong, 2004), were grouped into category
3; those that were annotated with terms including defense response, hyper-
sensitive response, or response to bacterium or important defense-related
process, such as indole glucosinolate biosynthetic process (Clay et al., 2009),
were partitioned into category 4; and those that were annotated with terms
including photosynthesis, growth, development, cell cycle, or organ mor-
phogenesis were partitioned into category 5. The modules that were annotated
with other functions were removed. A complete list of the significant modules
is provided in Supplemental Table S10.

Calculation of CC

As an index to measure the node’s closeness to the center of the network,
CC is defined as follows:

CCðxÞ ¼ N2 1
∑y∈U;y�xdðx; yÞ

ð10Þ

where N is the gene number in the network, U is the set of all genes in the
network, and d(x,y) is the shortest network distance between genes x and y.

Network Visualization

Cytoscape (Saito et al., 2012) and its plugins were used to visualize the network.
Specifically, Cerebral plugin (http://www.pathogenomics.ca/cerebral/) was used

to visualize the shared subnetwork in pathway style. The subcellular location in-
formation of gene production was downloaded from SUBA3 (http://suba.
plantenergy.uwa.edu.au/). The GO enrichment results from BiNGO were impor-
ted into the Enrichment Map plugin (http://www.baderlab.org/Software/
EnrichmentMap) to create an Enrichment Map of the shared network.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Assembly of the integrative gene network
(AraONE).

Supplemental Figure S2. The cumulative distribution of reliability score in
the PPI data.

Supplemental Figure S3. Comparison of the GO term annotation similar-
ities of AraONE/PPI and the corresponding random network.

Supplemental Figure S4. The average GO term annotation similarity of
retained PPIs as a function of PPI reliability score.

Supplemental Figure S5. Venn diagram of the overlap among the five data
sets.

Supplemental Figure S6. Reproducibility of NGF.

Supplemental Figure S7. Differential expression of NPR1, CPK1, and their
neighbors.

Supplemental Figure S8. Force-directed layout of the shared subnetwork.

Supplemental Figure S9. Biological processes enriched in the shared sub-
network after removing the interactions inferred from gene coexpression
data.

Supplemental Figure S10. Functional annotations of module M63.

Supplemental Figure S11. Submodules derived from M63.

Supplemental Figure S12. CC of M63.

Supplemental Table S1. Source of the chromatin modification data.

Supplemental Table S2. AraONE interactions annotated with their data
sources.

Supplemental Table S3. Composition of the gene expression profiles.

Supplemental Table S4. Performance of NGF on two independent data
sets.

Supplemental Table S5. All significantly important genes and interactions
identified by NGF.

Supplemental Table S6. Extended Tables II and III with functional anno-
tation and reference information for each gene.

Supplemental Table S7. The top 30 DEGs and their functional annotation.

Supplemental Table S8. Gene members of the 633 network modules.

Supplemental Table S9. List of 49 putative effector targets within the
shared subnetwork.

Supplemental Table S10. Significant network modules identified by NGF-
based GSEA and their functional annotations.

Supplemental Table S11. Functional annotation of the network modules
of the two modular models.

Supplemental Text S1. The shared subnetwork in Cytoscape (.cys) format
(Cytoscape 2.8.2 installed with the Cerebral plugin is recommended to
explore this data set).
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