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Computational characterization of parallel dimeric
and trimeric coiled-coils using effective amino
acid indices†

Chen Li,a Xiao-Feng Wang,bc Zhen Chen,b Ziding Zhang*b and Jiangning Song*ad

The coiled-coil, which consists of two or more a-helices winding around each other, is a ubiquitous and

the most frequently observed protein–protein interaction motif in nature. The coiled-coil is known for

its straightforward heptad repeat pattern and can be readily recognized based on protein primary

sequences, exhibiting a variety of oligomer states and topologies. Due to the stable interaction formed

between their a-helices, coiled-coils have been under close scrutiny to design novel protein structures

for potential applications in the fields of material science, synthetic biology and medicine. However,

their broader application requires an in-depth and systematic analysis of the sequence-to-structure

relationship of coiled-coil folding and oligomeric formation. In this article, we propose a new

oligomerization state predictor, termed as RFCoil, which exploits the most useful and non-redundant

amino acid indices combined with the machine learning algorithm – random forest (RF) – to predict the

oligomeric states of coiled-coil regions. Benchmarking experiments show that RFCoil achieves an AUC

(area under the ROC curve) of 0.849 on the 10-fold cross-validation test using the training dataset and

0.855 on the independent test using the validation dataset, respectively. Performance comparison

results indicate that RFCoil outperforms the four existing predictors LOGICOIL, PrOCoil, SCORER 2.0

and Multicoil2. Furthermore, we extract a number of predominant rules from the trained RF model that

underlie the oligomeric formation. We also present two case studies to illustrate the applicability of the

extracted rules to the prediction of coiled-coil oligomerization state. The RFCoil web server, source

codes and datasets are freely available for academic users at http://protein.cau.edu.cn/RFCoil/.

Introduction

The coiled-coil is a ubiquitous structural motif consisting of
two or more a-helices, which wind around each other to form a
rope-like structure. Nearly sixty years ago, Crick proposed the
standard structure model of the coiled-coil, which is distinct
from other protein structures. Dimeric and trimeric coiled-coils
are the two most common types of coiled-coil structures. Coiled-
coils can be found in all organisms and it is estimated that nearly
10% of eukaryotic proteins and 3% of all protein-encoding regions

of genes harbour the coiled-coil domain,1–4 respectively. Due to
their ability to oligomerize, coiled-coils play crucial roles in
many biological processes, such as transcription, intracellular
trafficking, viral infection and cellular signaling.5,6 The property
of coiled-coils, which enables two proteins to interact with each
other, also attracts a great deal of interest from protein
designers.7 Coiled-coils are among the first designed proteins,8,9

with potential applications in material science, synthetic biology
and medicine.10,11 Accordingly, understanding the mechanism
of coiled-coil oligomerization is critically important for researchers
to design versatile proteins with different functions.

The rope-like structure of coiled coils enables them to generate
an interesting heptad repeat sequence pattern. That is, the structure
goes around two complete turns of the helix after 7 residues, rather
than the regular 7.2 residues. The heptad repeat is often labeled
as abcdefg. Residues at the register positions a and d are often
hydrophobic, forming a buried hydrophobic surface and providing
the driving force for oligomerization. In contrast, residues at
positions e and g are often charged or polar, which form salt
bridges and electrostatic interactions, helping specify the binding
partners.12 Despite the simple heptad repeat pattern at the sequence
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level, coiled-coils display a great variety of oligomerization states,
including dimers, trimers, tetramers, pentamers, and even hepta-
mers. In addition, they often vary in the helix orientation, parallel
or anti-parallel. Most coiled-coils adopt left-handed super-coils;
however, right-handed coiled-coils are also observed.13 Accordingly,
an important question to address is, how can this simple heptad
sequence repeat pattern encode such diverse structures?

To answer this question, a number of computational methods
have been developed to analyze coiled-coils, which can be generally
grouped as sequence-based or structure-based methods. Sequence-
based methods mainly use the frequencies of residues or residue
pairs at specific register positions to predict coiled-coil regions,14–21

oligomerization states4,17,18,22,23 and helix orientations.24 In contrast,
structure-based methods usually utilise structural information to
facilitate the prediction, including SOCKET12 and Twister.25 In
particular, the SOCKET algorithm is able to recognize characteristic
knobs-into-holes side-chain packing of coiled-coil structures, clearly
define coiled-coil helix boundaries, oligomerization states and helix
orientations and assign heptad registers. The CC+ database26 is
developed based on the SOCKET algorithm, which can be used to
create training datasets for building coiled-coil classifiers. Twister is
implemented to compute local structural parameters of coiled-coils,
based on Crick’s parameterization.27

Regarding the prediction of coiled-coil oligomerization state,
two early-stage algorithms SCORER28 and Multicoil29 exist. More
recently, two new versions, SCORER 2.023 and Multicoil217 have
been developed, and have been shown to perform better than
their respective older versions. Almost at the same time, another
two predictors for the coiled-coil oligomerization state, PrOCoil22

and LOGICOIL,4 were published. Multicoil2 employs a Markov
Random Field method to integrate sequence features. It assigns
the probability of a residue in a sequence to be non-coiled-coil,
dimeric or trimeric. SCORER 2.0 and PrOCoil classify parallel
dimeric and trimeric coiled-coils, given a coiled-coil sequence
with known heptad registers. SCORER 2.0 uses statistically
significant amino acid frequencies at seven heptad registers in
combination with a Bayes factor method to distinguish parallel
dimers from trimers. PrOCoil designs a new kernel function and
uses the SVM (Support Vector Machine) algorithm to classify
parallel dimers and trimers.22 LOGICOIL, trained with coiled-coil
regions larger than 14 amino acids using Bayesian variable selection
response probabilities, can predict multiple oligomerization
states for coiled-coil regions such as parallel dimer, antiparallel
dimer, trimer and tetramer.4 Therefore, LOGICOIL is currently
considered as the state-of-the-art predictor for oligomerization
states of coiled-coils.

In this article, we address the same classification task of
SCORER 2.0 and PrOCoil by developing a novel tool RFCoil,
which uses a sequence-based approach to distinguish parallel
dimeric from trimeric coiled-coils (see Fig. 1 for examples of
parallel dimer and trimer). More specifically, RFCoil employs
the random forest (RF) algorithm to identify the most important
and non-redundant amino acid indices and construct the classi-
fiers to predict the oligomerization state of coiled-coils. We further
compare the performance of RFCoil with four existing tools
SCORER 2.0, PrOCoil, Multicoil2 and LOGICOIL by performing

both 10-fold cross-validation and independent tests. The results
show that RFCoil outperforms four existing tools LOGICOIL,
SCORER 2.0, PrOCoil and Multicoil2 in the independent test. More-
over, we extract a number of important rules from the built RF
models in an effort to provide biological insights into the underlying
rules of the formation of oligomerization states of coiled-coils.

Materials and methods
Dataset

We used the benchmark dataset originally compiled by the
developers of PrOCoil to train our models and assess the
performance of our method. This benchmark dataset comprises
385 dimers and 92 trimers. The minimum length of the coiled-
coils is 8 and nearly half of the coiled-coils have lengths longer
than 14. This dataset was further divided into ten folds, and any
two sequences from different folds have a sequence identity of
no more than 60%. The methods were tested using the 10-fold
cross-validation tests.

Moreover, apart from the benchmark dataset, we also con-
structed an independent test dataset to assess and compare the
predictive performance of different methods. The procedures
for constructing this independent test dataset are as follows: first, we
used the SOCKET algorithm12 to search the PDB database32 for
parallel coiled-coil dimers and trimers. For dimers, we selected those
sharing a sequence identity of no more than 60% with the dimeric
coiled-coil sequences in the training dataset. The selected dimers
were further filtered to ensure that any two sequences shared a
sequence identity of no more than 60%. The trimeric coiled-coils
were filtered in a similar way to the dimers. Note that the sequence
identity was calculated using the Needleman–Wunsch algorithm.33

The final independent test set consists of 363 dimers and 48 trimers.

RFCoil

Our RFCoil approach includes four major steps, as shown in
Fig. 2. The first step is to construct the training and independent
test datsets extracted from the PDB database. The second step is
to encode the input data, which was achieved by extracting
the average amino acid index values for each heptad register.

Fig. 1 Cartoon representations of parallel (A) dimeric (PDB ID: 1A9330)
and (B) trimeric (PDB ID: 1HTM31) coiled-coils.
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The third step is to select the informative and non-redundant
features for oligomerization state classification. We assumed
no prior knowledge of the importance of each feature and this
makes it possible for our feature selection method presented
here to be applied to other questions. The final step is to use
the selected features as the input to train RFCoil models. More
details about the RFCoil approach are discussed in the following
sections.

Sequence encoding. We attempted to capture the oligomerization
state of the coiled-coil using its amino acid sequence information
and each coiled-coil sequence using the physiochemical and
biochemical properties of amino acids. To realize this, we extracted
529 amino acid indices that had no ‘‘NA’’ values in the AAindex
database34 (see Tables S1 and S2, ESI†). We encoded each coiled-coil
sequence using the average amino acid index value at each heptad
register, obtained using the following equation:

Iðr; iÞ ¼

P

a2r
AAða; iÞ

nðrÞ (1)

where r represents a heptad register which can be a, b, c, d, e, f
or g, i denotes the ith amino acid index amongst the 529 amino
acid indices, a represents the amino acid residue in the coiled-
coil sequence whose heptad register is r, AA(a, i) stands for the
value of the ith amino acid index for the amino acid a, while n(r)
is the number of amino acid residues at the heptad register r. As
there are a total of 7 heptad registers and 529 amino acid indices, a
coiled-coil sequence is represented by a 3703-dimensional vector.

Random forest. Ensemble learning is a prevalent machine
learning technique. Its underlying principle is based on the
observation that the ensemble of some weak classifiers can
usually achieve a better accuracy than a single classifier when
using the same training information. RF35 is an effective ensemble
learning algorithm and has been widely applied in bioinfor-
matics.36–41 RF consists of many decision trees, each of which is
grown as follows. Suppose that there are N instances and M
variables in the training set. First, N instances are randomly
selected from the training set with replacement. Second, at

each node,
ffiffiffiffiffi
M
p

variables are randomly selected and the best is

used to split the node. Finally, each tree is grown as large as possible.
The RF chooses the classification of the most votes given by all the
individual trees. In this work, the random forest algorithm was
implemented using the ‘RandomForest’ R package.42

Feature selection and model training. As described above, a
coiled-coil sequence was encoded by 3703 features. However, it
is likely that some features were irrelevant or redundant,
making little or no contribution to the prediction. We thus
performed feature selection experiments to select and identify
the most meaningful features for the classification of coiled-
coil oligomerization states. For each feature, i.e. the variable in
the RF, its importance is measured by the gini index of RF.
When splitting the variable on a node in the process of growing
a tree, the gini impurity criterion, which is a ‘‘goodness of split’’
criterion,43 is less than the parent node for the two child nodes.
Therefore, summing up the gini decrease for the variables over
all trees gives the value for assessing the importance of the
variable.

After evaluating the importance of each feature, another
issue remains to be resolved. That is, the integration of individual
best features does not necessarily lead to the best classification
performance44 and there still exists redundancy between different
features. For example, there are many amino acid indices that
describe the amino acid hydrophobicity in the AAindex database
and some might be highly correlated with each other. To address
this, we calculated the correlation coefficient between any two
amino acid indices. If two features encode the same heptad register
and the correlation coefficient of their representative amino acid
indices has an absolute value of less than a threshold c, then the
feature with a smaller gini decrease will be removed from the
feature set. After this repetitive procedure, we select the top n
features to build the final RF model.

In the above process, we used the Kendall rank correlation
coefficient. Let (X1, X2,. . ., X20) and (Y1, Y2,. . ., Y20) be two sets of
amino acid indices. A pair of amino acid index values (Xi, Yi)
and (Xj, Yj) are defined to be concordant, if both Xi 4 Xj and
Yi 4 Yj or both Xi o Xj and Yi o Yj, and defined to be
discordant, if Xi 4 Xj and Yi o Yj or Xi o Xj and Yi 4 Yj. The
Kendall correlation coefficient t is defined as follows:

t ¼ nc � nd
1

2
� 20� ð20� 1Þ

(2)

where nc and nd represent the numbers of concordant pairs and
discordant pairs, respectively.

Extracting significant rules

Each tree in the RF can be represented by a set of rules. Each
path from the root to a leaf node in a tree is a rule. A total of
4000 decision trees were grown in our work to build the RF
model, resulting in the presence of many rules in the model.
We devised a method to extract a rule set that contains as few
rules as possible to correctly classify all the instances in the
dataset: firstly, we extracted the rules without wrongly classifying
any instance in the dataset and identified the rules that could
classify the largest number of dimers or trimers; secondly, we

Fig. 2 Flowchart of RFCoil. Its development comprises four major steps,
including data preparation, feature extraction, feature selection and RF
model training and validation.
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saved the rules found in the first step in the rule set and removed
those instances that were correctly classified by the rule; thirdly,
we repeated steps 1 and 2 until there were no instances in the
dataset.

Accessing the prediction performance of the RF model

We used the receiver operating characteristic (ROC) curve45 to
assess the prediction performance of the RF model. The ROC
curve is a plot of true positive rate (TPR) against false positive
rate (FPR). TPR defines the ratio of correctly predicted positives
to all the positive instances, while FPR stands for the ratio of
incorrectly predicted positives to all the negative instances. In
this study, we defined dimeric coiled-coils as positive instances
and trimeric coiled-coils as negative instances. In addition, the
area under the ROC curve (AUC) represents the probability of a
classifier to rank a randomly selected positive instance higher
than a randomly selected negative one. Hence, AUC was also
used as an important performance measure in this study to
compare the performance of different methods.

Performance comparison between RFCoil and four existing
predictors

To evaluate the performance of RFCoil, we conducted two
benchmarking experiments. In the first benchmarking experi-
ment, we compare the performance of RFCoil with SCORER 2.0
and PrOCoil by performing 10-fold cross-validation tests on the
PrOCoil dataset. In the second benchmarking experiment, we
used the PrOCoil dataset as the training dataset to train the
models of RFCoil and PrOCoil. Then the constructed indepen-
dent test dataset was used to assess the performance of RFCoil
in comparison with the other four tools SCORER 2.0, PrOCoil,
Multicoil2 and LOGICOIL. In particular, the prediction outputs
of SCORER 2.0, PrOCoil and LOGICOIL were generated by their
local versions downloaded from the corresponding websites. In
the case of Multicoil2, we instead submitted the test sequences
to its online server and obtained the prediction results.

Results and discussion

In this section, we first report the prediction performance
of RFCoil in comparison to SCORER 2.0 and PrOCoil on the
10-fold cross-validation tests. We then comprehensively assess
the performance of RFCoil, PrOCoil, SCORER 2.0, LOGICOIL
and Multicoil2 in the independent tests. Finally, we discuss the
final features selected by our feature selection method and the
extract significant rules on the PrOCoil benchmark dataset.

Prediction performance on the 10-fold cross-validation tests
using the PrOCoil dataset

We performed 10-fold cross-validation tests to assess the per-
formance of the predictive models of RFCoil using the PrOCoil
dataset (Table 1). When using the average amino acid index
values at each heptad as the input, the average AUC of RFCoil
was 0.819, compared with 0.808 of PrOCoil and 0.789 of
SCORER 2.0, respectively. After setting the Kendall correlation

coefficient between the amino acid indices at r0.4 to select the
95 top features, the average AUC of RFCoil was further
improved to 0.849. The authors of PrOCoil22 found that the
training set could be further augmented by blast search against
the NCBI-NR database, which could provide an improved
prediction performance in their study. Here, our results indicate
that the AUC of PrOCoil on the augmented training dataset
indeed reached 0.818, representing a better performance than
that of the original PrOCoil. On the other hand, we find that
RFCoil performed the best for certain folds and reasonably well
for other folds during 10-fold cross-validation tests (Table 1). In
summary, RFCoil achieved a better performance than the other
two methods PrOCoil and SCORER 2.0 on the 10-fold cross-
validation tests using the PrOCoil dataset. According to the
10-fold cross-validation tests, we implemented the final online
web server of RFCoil using the selected feature set.

Prediction performance on the independent tests

In addition to the performance evaluation using the PrOCoil
benchmark dataset, we also curated an independent test data-
set to comprehensively compare the performance of our
method RFCoil for predicting the coiled-coil oligomerization
state with four existing predictors SCORER 2.0, PrOCoil, Multi-
coil2 and LOGICOIL. In particular, we used the PrOCoil dataset
as the training set to build the two types of predictive models
for RFCoil (denoted as ‘‘RFCoil (all features)’’ and ‘‘RFCoil
(selected features)’’ which used all features and final selected
features as the respective inputs to build the models) to classify
coiled-coil sequences in this independent test dataset. LOGICOIL
and SCORER 2.0 were trained on the coiled-coil sequences no
shorter than 15 amino acids, while Multicoil2 could only predict
coiled-coil sequences longer than 21 amino acids. In the training
dataset of PrOCoil, the minimum length of coiled-coil sequences is
8 amino acids. In this study, we reported the results by performing
the independent test using our independent test dataset with the
minimum length of coiled-coil sequences of 8 amino acids.

The output scores were selected from two prediction categories
of LOGICOIL (i.e., parallel dimer and trimer) and normalized to
[0,1] before plotting the ROC curve. Instead of providing an overall

Table 1 The AUC scores of RFCoil, SCORER 2.0 and PrOCoil, evaluated
using 10-fold cross-validation tests

Fold
RFCoil
(all features)

RFCoil
(selected
features) SCORER 2.0 PrOCoil

PrOCoil_
blasta

1 0.612 0.691 0.773 0.882 0.882
2 0.801 0.817 0.776 0.967 0.935
3 0.750 0.835 0.625 0.581 0.681
4 0.885 0.875 0.810 0.830 0.850
5 0.971 0.957 0.833 0.848 0.867
6 0.869 0.865 0.808 0.741 0.842
7 0.908 0.961 0.875 0.809 0.724
8 0.803 0.769 0.735 0.744 0.744
9 0.698 0.825 0.651 0.738 0.702
10 0.890 0.895 1.000 0.943 0.957
Average 0.819 0.849 0.789 0.808 0.818

a PrOCoil_blast denotes the model trained using the augmented PrOCoil
dataset using blast search against the NCBI-NR database.
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prediction score for the input sequence, Multicoil2 provides pre-
dicted probabilities for each individual residue in the sequence of
forming dimers, trimers or non-coiled-coils. Accordingly, to compare
with other methods, we calculated the average of the predicted
probabilities of Multicoil2, normalized them into the range of [0,1]
and removed the predicted non-coiled-coils from the results (with
the prediction threshold set at 0.5).

The ROC curves and the corresponding AUC values of
RFCoil, SCORER 2.0, PrOCoil, LOGICOIL and Multicoil2 in
the independent tests are shown in Fig. 3. The AUC values of the
two types of RFCoil models that used all features and the final
selected features as inputs were 0.855 and 0.851, respectively. These
represent the overall best AUC scores among different predictors.
In contrast, Multicoil2 achieved an AUC value of 0.689, while
SCORER 2.0 achieved an AUC score of 0.776. PrOCoil achieved
an AUC value of 0.736 and the PrOCoil_blast model trained using
the augmented dataset achieved an AUC of 0.723, both of which
decreased considerably compared to that upon the 10-fold cross
validation. In contrast, LOGICOIL achieved an AUC value of 0.757.
We also noted that augmenting the training set in this case did not
help improve the performance of PrOCoil, as reflected by a lower
AUC of 0.723 obtained using the latter model.

Analysis of final selected features based on the PrOCoil dataset

Application of the Kendall correlation coefficient set at r0.4
resulted in a subset of top 95 features selected (see Table S3,
ESI†). The average AUC of the RFCoil model trained using this
selected feature set reached its maximum value of 0.849 on the
10-fold cross-validation tests using the PrOCoil benchmark
dataset (Table 1). We further calculated the number of features
at each heptad register, as well as the sum of the gini decreases
for the features at each heptad register. Table 2 shows that the
position a is the most important position for the discrimina-
tion between parallel dimers and trimmers, as determined by
the sum of the gini decreases. The other positions d, e, c, g are

less important compared with the position a, while positions
f and b are the least important positions.

Significant rules extracted from the PrOCoil dataset

Using the method of rule extraction described in the Methods
section, we extracted 10 significant rules covering all the 382 dimers,
and another 10 significant rules covering all the 92 trimers in the
PrOCoil dataset. The description of each specific rule and the
numbers of dimers and trimers covered by the corresponding rule
are given in Tables 3 and 4, respectively. Note that it is likely that a
sample in the dataset may be identified by more than two rules, as
shown in the tables.

Each rule is a combination of useful amino acid indices at
certain heptad registers. The RF algorithm is particularly powerful
in making use of the correlations between different heptad regis-
ters for efficient classification. In contrast, SCORER 2.0 only uses
residue frequencies at each heptad register, failing to take into
account the potential interactions between different heptad-repeat
positions, while PrOCoil employs the frequencies of each amino
acid pair in each pair of heptad registers. An important advantage
of RF is that it can make use of the correlations between two or
more heptad registers. This might explain why our method out-
performed the other four methods PrOCoil, Multicoil 2, SCORER
2.0 and LOGICOIL.

Case studies

Using the selected 95 features on the PrOCoil dataset, we built
the RF model and illustrated the performance of this model on
two parallel coiled-coil structures from the independent test
dataset (see Fig. S1 for structural information regarding these
two proteins, ESI†). The first one is a coiled-coil parallel dimer
from the Rho-associated protein kinase 1 (PDB ID: 3O0Z). This
protein is involved in a variety of cellular processes including
muscle contraction, cell migration and stress fiber formation.46

Its predicted probability of being dimeric by the RF model was
0.872. The other is a trimer from the avian reovirus S1133 fibre
(PDB ID: 2VRS), a minor component of the avian reovirus outer
capsid.47 Its probability of being a parallel trimer predicted by
the RF model was 0.759. The coiled-coil oligomerization states
of both proteins were correctly predicted by RFCoil.

In addition, we found that the dimeric coiled-coil in the
Rho-associated protein kinase 1 conformed to the significant
rules 1, 2, 5 and 10, as listed in Table 3. Further, the trimeric
coiled-coil in 2VRS conformed to the significant rules 1 and 5
listed in Table 4. Altogether, these results showcase the pre-
dictive ability of the constructed RFCoil model and usefulness
of the extracted rules based on the selected effective amino acid
indices.

Fig. 3 The ROC curves of different methods on the independent test
dataset.

Table 2 Statistics of the selected features

Heptad register a b c d e f g

Number of features 13 5 8 10 9 5 8
Sum of the gini decrease 35.6 5.8 12.5 16.6 18.4 7.8 11.8
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Conclusions

In this article, we addressed the challenging task of distinguish-
ing parallel dimeric from trimeric coiled-coils by developing an
RF-based approach termed as RFCoil, which used effective
amino acid indices to build the predictive models. To remove
redundant and irrelevant features and improve the classifica-
tion performance, we combined the gini index calculated by RF
and the correlation coefficients between the amino acid indices
at different positions of heptad registers to select the most
meaningful features. The model trained using the selected
features indeed improved the prediction performance. We
further analyzed the selected features and proposed a rule
extraction method to identify significant rules from the RF
model to better understand the important rules that underlie
the organization of dimeric and trimeric coiled-coils. The rules
provide useful insights into the design of coiled-coil proteins.

In addition, our method can be readily extended to predict
coiled-coils of higher order oligomerization states, provided
that more solved structures are available in the near future.
Benchmarking experiments indicate that RFCoil outperforms
the other four existing tools. It is expected to become an
efficient tool to facilitate the studies of coiled-coil structures.
Finally, as an implementation of our method, an online pre-
diction server of RFCoil has been made freely available at http://
protein.cau.edu.cn/RFCoil. The source code can be downloaded
for interested users to build their specific models using their
own datasets.
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Table 3 The extracted rules for coiled-coil dimers

No. Description of the rulea
Number of samples
covered by the rule
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I( f, 73) 4 240.0835 & I( g, 50) r 0.088 & I( g, 201) r 1.654 & I( g, 408) 4 1.1735 & I(b, 18) r 7.3085 &
I(b, 273) 4 �0.375

173

3 I(c, 371) 4 0.355 & I(d, 220) r 2.9275 & I(e, 372) r 2.202 & I(e, 495) r 0.9795 & I( g, 61) 4 0.3625 &
I(a, 386) r 0.388

128

4 I(e, 299) r 1.165 & I(a, 275) 4 0.1125 & I(a, 374) r 0.7665 58
5 I(c, 194) 4 �1.4475 & I(c, 293) r 0.4225 & I(c, 340) r 4.169 & I(d, 342) 4 �1.2415 & I(d, 401) r 1.22 &

I( f, 338) r 1.4625 & I( g, 155) 4 107.1895 & I( g, 201) 4 0.759 & I(a, 44) 4 0.5575 & I(b, 529) 4 �3.1775
201

6 I(c, 303) r 1.2345 & I(d, 17) 4 4.279 & I(d, 342) 4 �0.425 & I(e, 110) 4 0.3625 & I( g, 336) r 0.8415 &
I(a, 386) r 0.1705 & I(a, 506) 4 1.4695

34

7 I(c, 18) r 6.9585 & I(c, 361) 4 �0.177 & I(e, 296) r 0.2385 & I(a, 400) r 16.35 & I(a, 506) r 1.7425 &
I(b, 185) r 4.195 & I(a, 99) r 1.54

183

8 I(a, 107) 4 0.7325 & I(d, 401) r 1.21 & I(a, 1) r 4.7025 & I(a, 294) 4 �0.335 & I(g, 370) r 0.773 &
I(b, 185) r 4.195

185

9 I(c, 326) r 1.5165 & I(e, 296) r 0.28 & I(e, 495) r 0.9985 & I( g, 408) r 1.171 60
10 I(c, 18) 4 6.89 & I(c, 141) 4 0.45 & I(d, 94) 4 0.8835 & I(d, 275) r 0.097 & I(e, 296) 4 0.161 &

I( f, 331) r 1.2875 & I( g, 61) r 1.056 & I(a, 337) 4 0.7415
9

a ‘‘&’’ denotes the conjunction word ‘‘and’’, while I(r, n) represents the nth amino acid index at the heptad r.

Table 4 The extracted rules of coiled-coil trimers

No. Description of the rulea
Number of samples
covered by the rule

1 I(c, 236) 4 0.795 & I(c, 361) r 0.123 & I(d, 326) r 0.7415 & I(e, 219) 4 0.945 & I(e, 299) 4 1.1665 &
I( g, 201) 4 0.536 & I( g, 309) 4 0.8665 & I(a, 400) 4 14.1515 & I(a, 506) 4 1.464

44

2 I(c, 293) 4 �0.324 & I(c, 361) r 0.123 & I(c, 405) r 1.2725 & I(d, 175) r 0.8575 & I(e, 110) 4 0.3725 &
I( f, 16) r 8.5555 & I( g, 408) 4 0.655 & I(a, 374) r 0.826 & I(b, 529) r �3.167 & I(b, 273) 4 �0.1685

43

3 I(c, 340) 4 0.096 & I(a, 176) 4 0.675 & I(d, 195) 4 5.3525 & I( f, 73) r 245.6 & I( f, 385) 4 �0.0975 &
I(a, 386) r 0.1365 & I(b, 18) 4 5.85

17

4 I(d, 94) r 1.154 & I(a, 18) 4 5.125 & I( g, 336) 4 0.8415 & I(a, 374) r 0.765 & I(a, 400) 4 12.6765 &
I(b, 18) r 7.7415 & I(b, 273) 4 �0.104

30

5 I(c, 361) r �0.176 & I(d, 94) r 1.2915 & I(a, 176) r 0.8375 & I(e, 360) r 0.2115 & I(b, 329) r 1.325 19
6 I(c, 141) 4 0.655 & I(e, 296) 4 0.2665 & I( g, 408) r 0.9935 & I(a, 374) 4 0.7135 8
7 I(a, 107) 4 0.7505 & I(d, 220) r 2.9275 & I(d, 240) r �2.141 & I(e, 495) 4 0.9795 & I(a, 294) r �0.245 5
8 I(d, 195) r 9.1325 & I(d, 422) 4 �0.501 & I(e, 295) 4 �0.061 & I(e, 372) 4 0.1965 & I( f, 73) r 267.9165 &

I(a, 374) 4 0.6285 & I(a, 400) 4 14.385 & I(a, 99) r 1.2675
16

9 I(c, 340) 4 �0.0625 & I(c, 371) 4 1.061 & I( f, 16) 4 8.481 & I( g, 12) 4 �4.7165 & I(b, 284) 4 �0.06 14
10 I(b, 478) 4 1.6165 & I(c, 361) 4 �0.1935 & I(d, 74) 4 �25.1175 & I(d, 422) 4 �0.3215 & I( g, 98) 4 1.0125 &

I( g, 370) r 0.773
3

a See the footnote in Table 3 for the notations of each symbols in the rules.
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