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Abstract

Background: As one of the most important virulence factor types in gram-negative pathogenic bacteria, type-III effectors
(TTEs) play a crucial role in pathogen-host interactions by directly influencing immune signaling pathways within host cells.
Based on the hypothesis that type-III secretion signals may be comprised of some weakly conserved sequence motifs, here
we used profile-based amino acid pair information to develop an accurate TTE predictor.

Results: For a TTE or non-TTE, we first used a hidden Markov model-based sequence searching method (i.e., HHblits) to
detect its weakly homologous sequences and extracted the profile-based k-spaced amino acid pair composition (HH-
CKSAAP) from the N-terminal sequences. In the next step, the feature vector HH-CKSAAP was used to train a linear support
vector machine model, which we designate as BEAN (Bacterial Effector ANalyzer). We compared our method with four
existing TTE predictors through an independent test set, and our method revealed improved performance. Furthermore, we
listed the most predictive amino acid pairs according to their weights in the established classification model. Evolutionary
analysis shows that predictive amino acid pairs tend to be more conserved. Some predictive amino acid pairs also show
significantly different position distributions between TTEs and non-TTEs. These analyses confirmed that some weakly
conserved sequence motifs may play important roles in type-III secretion signals. Finally, we also used BEAN to scan one
plant pathogen genome and showed that BEAN can be used for genome-wide TTE identification. The webserver and stand-
alone version of BEAN are available at http://protein.cau.edu.cn:8080/bean/.
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Introduction

After having coevolved with their hosts for hundreds of millions

of years, gram-negative pathogenic bacteria acquired a specific

type of proteins known as type-III effectors (TTEs), which are able

to suppress host immunity through mimicking host functional

proteins, modifying components in the immune signal pathway or

even directly regulating host gene expression [1,2]. As a result, the

host range of one pathogenic bacterium is greatly influenced by its

repertoires of TTEs [3,4].

Elaborate experimental strategies, such as translocation assays

of labeled TTE candidates [5–7] and functional screening for

TTEs based on hypersensitive response (HR) in plants [8], have

been designed to identify TTEs from pathogen genomes. Thanks

to community-wide efforts over many years, hundreds of TTEs

have been identified from model gram-negative pathogenic

organisms such as Escherichia coli, Salmonella enterica, and Pseudomonas

syringae [9]. Even so, it is still an arduous and time-consuming task

to conduct these experimental approaches on the whole pathogen

genome. Therefore, the computational identification of TTEs is

highly desired, and it is playing an increasingly important role in

accelerating the identification of TTEs from newly sequenced

pathogen genomes.

The fast evolutionary rate of TTEs impedes the use of

traditional bioinformatics methods such as sequence similarity

searches to correctly identify TTEs from newly sequenced

pathogen genomes. Since 2009, a series of state-of-the-art machine

learning-based TTE predictors have been developed [10–15].

Typical methods include the naı̈ve Bayes algorithm EffectiveT3

[14], two support vector machine (SVM) predictors (SIEVE [15]

using both protein and DNA information and BPBAac [10] using

a sequence encoding method called bi-profile), and an method

based on artificial neural network (ANN) [12]. Generally, existing

machine learning methods are still impractical with a high false

positive rate (FPR) when they are used on a whole bacterial

genome [16]. Recently, a meta-approach has also been proposed

to predict TTEs from the genome level [16]. However, this meta-

approach would be infeasible for some newly sequenced bacterial

genomes, in which the gene expression data are not available.

Pathogenic bacteria inject TTEs into host cells using a

complicated molecular machine called a type-III secretion system

PLOS ONE | www.plosone.org 1 February 2013 | Volume 8 | Issue 2 | e56632



(T3SS). Although our current knowledge of type-III secretion

signals is still very limited, some type-III secretion signal-related

features have been observed. Previous studies have indicated that

the first 20–30 amino acids in the N-terminal sequences of TTEs

were enough to target them into host cells [17,18]. It has also been

proposed that the secondary structure of mRNA, which encodes

TTEs, could be the carrier of secretion signals [19]. Other

researchers have reported that some TTEs’ secretion processes

require the participation of chaperones [20]. Moreover, a

statistical analysis between TTEs and non-TTEs also showed

different residue propensities and structural properties in the N-

terminal sequences [14,16,21]. For instance, polar amino acids

such as serine and threonine are enriched, but hydrophobic and

acidic amino acids are depleted within the first 30 residues of

TTEs. Intrinsic disorder is also deemed to be a possible universal

characteristic for type-III secretion signals [22]. Coding sequence

analysis shows unusual G+C content and codon usage bias in

TTEs [16], implying that one pathogen can acquire TTEs from

other pathogens via horizontal gene transfer. Although none of the

above features can be used individually to effectively discriminate

TTEs from other proteins in bacterial genomes, these observations

have clearly suggested that type-III secretion signals should be very

diverse.

Sequence motifs are evolutionarily plastic sequence fragments

that have been reported to mediate protein-protein interaction

and be enriched in intrinsically disordered regions of proteins

[23,24]. In eukaryotic cells, they can target proteins to specific

cellular compartments [25]. In the type-II and type-IV sec-

dependent secretion pathways of gram-negative bacteria, secre-

tion signals have a motif-like amino acid composition within the

N-terminal of protein sequences [26]. Although the concept of

sequence motif-related type-III secretion signals has been

proposed [15], it is still not widely accepted, and the

experimental verification of motifs in TTEs is very limited. In

this work, we further hypothesize that specific sequence motifs

that mediate the interaction between TTE and T3SS should

play important roles in type-III secretion signals, and we can

identify TTEs using this sequence motif-related information.

Based on this hypothesis, we explored the use of k-spaced amino

acid pair information to predict TTEs, as k-spaced amino acid

pairs could be regarded as the basic elements of short sequence

motifs. In fact, the composition of k-spaced amino acid pairs

(CKSAAP) has become a useful feature construction of a

sequence or a sequence fragment, which has been successfully

employed for diverse bioinformatics tasks, including the

prediction of protein flexible/rigid regions [27], protein

crystallization [28], protein structural classes [29], membrane

protein types [30], O-glycosylation sites [31], palmitoylation sites

[32] and ubiquitination sites [33].

We called our method BEAN (Bacterial Effector ANalyzer). In

our method, the profile of a TTE or non-TTE sequence was first

constructed based on a hidden Markov model (HMM) searching

strategy. Then, we used CKSAAP in the N-terminal sequences

extracted from the resulting profiles as input to train a linear SVM

model (Figure 1). We characterized the performance of BEAN

through 5-fold cross validation tests, and we also benchmarked

BEAN against four existing TTE predictors based on an

independent test set. We applied BEAN to conduct a genome-

wide TTE prediction in one plant pathogen, Ralstonia solanacearum

GMI1000. More importantly, we discussed T3SS-related motifs

through the evolutionary analysis and position distribution analysis

of the most predictive amino acid pairs in TTEs. It is hoped that

the current work can provide some new information regarding the

secretion signal in TTEs.

Materials and Methods

Data Collection and Preprocessing
To train our classification model, we primarily used a non-

redundant dataset compiled by Wang et al. (2011) [10], which

contains 154 TTEs collected from the literature and 308 non-

TTEs randomly sampled from pathogen proteomes [10].We

used these 462 sequences to train our prediction model and

construct our webserver. To investigate the influence of negative

samples, we also collected eight well-studied gram-negative

bacterial proteomes (Escherichia coli O157:H7, Salmonella enterica

serovar Typhimurium, Pseudomonas syringae DC3000, Yesinia pestis

bv. Antiqua, Chlamydia trachomatics, Shigella flexneri, Yesinia

enteroclitica, and Burkholderia pesudomallei ) from Uniprot [34].

We only retained sequences satisfying the following criteria: i)

they should have been reviewed in Uniprot; ii) there are no

words matching ‘‘T3SS effector’’ in the description section or

the regular expression ‘‘/Secreted.*type.*(III|three) secretion

system/’’ in the subcellular location section of the corresponding

Uniprot records; and iii) they should share a ,95% sequence

identity with known TTEs. We obtained 7143 sequences that

were regarded as negative samples (i.e., non-TTEs). The

sequence redundancy of these 7143 non-TTEs was further

removed using Arnold et al.’s method [14]. In brief, these non-

TTEs were grouped according to their sequence similarity

scores generated from Jaligner (http://jaligner.sourceforge.net).

If any two sequences were assigned a similarity bit score 0.15

times larger than the self-to-self similarity bit score from any of

these two sequences, they were grouped as one. For each group,

only one randomly selected sequence was kept. Finally, four

non-TTE sets were randomly sampled and the size of each set

is equal to 308. We combined Wang et al.’s data and these four

non-TTE sets into a dataset called Data1.

To construct an independent test set, 109 newly identified TTEs

and 14 experimentally validated non-TTEs were collected

manually from literature published after January 2011. Two

hundred non-TTE samples were further randomly sampled using

the procedures described in the above paragraph. To test the

robustness of the performance, the selection of 200 non-TTEs was

repeated five times. Finally, we obtained an independent test set

(i.e., Data2), which contained 109 TTEs, 14 non-TTEs, and five

sets of 200 randomly sampled non-TTEs. Detailed information

about Data1 and Data2 is provided in supporting information

(Dataset S1 and Dataset S2).

Homolog Searching and Profile Construction
For each TTE or non-TTE sequence, we used HHblits [35],

which implements an improved HMM-HMM profile searching

algorithm, to detect its homologs with 2 iterations. Other

parameters in HHblits were set to the default values. Note that

the HMM profiles of HHblits were built on full-length sequences.

To avoid incorrect searching results, the full length sequence of the

query was used in this procedure. Then, the resulting sequence

homologs plus the query sequence were aligned using the

maximum accuracy (MAC) algorithm [36] wrapped in HHsuite

to build a multiple sequence alignment (MSA). Subsequently, the

obtained MSA was PSI-BLASTed against a decoy NCBI sequence

database, which is a very small dummy database created for saving

searching time and has been included in HHsuite, to induce PSI-

BLAST program to construct a sequence profile, also known as a

position specific scoring matrix (PSSM). Due to the coverage

limitation of the current HHblits database, some sequences failed

to detect any homolog. In these cases, we used PSI-BLAST
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directly to search the NCBI NR database to construct the query

sequence’s PSSM.

Extracting k-spaced Amino Acid Pair Compositions from
Profiles

Letting ai(i~1,2,:::,20) denote one of 20 amino acids, a k-

spaced amino acid pair could be represented as

aifkgaj(i,j~1,2:,:::,20), where fkg indicates that there are k

residues between ai and aj in the original sequence. Specifically,

aifkgaj is a dipeptide when k is 0. In our work, the maximum k

was optimally set to 3, meaning that 20|20|(kz1)~1600
different amino acid pairs were taken into account. Instead of

calculating the composition of the 1600 pairs from the original

sequence directly, we used a profile-based k-spaced amino acid

pair composition method [30] to compute the feature vector of

each sequence. For a protein sequence with L residues, the

corresponding PSSM has a dimensionality of L|20. Regarding

an amino acid pair aifkgaj , appearing between the position of m

and mzkz1, we introduced the following score:

si,k,j,m~ maxfminfPSSM(m,ai),PSSM(mzkz1,aj)g,0g ð1Þ

Where PSSM(m,ai) denotes the score of amino acid ai at the

mth row of PSSM and PSSM(mzkz1,aj) stands for the score of

amino acid aj at the (mzkz1)th row of PSSM. If aifkgaj occurs

N times within a sequence, the composition score of aifkgaj is

defined as:

Si,k,j~
XN

si,k,j,m ð2Þ

In this work, the range of N-terminal residues was set to 50 and

the first residue in the N-terminal was ignored. That is to say, only

the N-terminal residues starting from 2 to 51 were taken into

account. Unless otherwise stated, the first N-terminal residue was

Figure 1. Overview of the proposed TTE predictor BEAN. A full-length sequence is used to construct its profile (PSSM) via HHblits search. Only
the first 2–51 residues of the N-terminal are used to compute the profile-based k-spaced amino acid pair composition. Then, the feature vectors with
a dimensionality of 1600 are taken as input to train a linear SVM classification model. Through the parameter transformation of the established
model, we obtained the weights of each k-spaced amino acid pair and analyzed the evolutionary conservation and sequence position distribution of
each pair. We also used our BEAN to scan a pathogen genome and identify TTE candidates.
doi:10.1371/journal.pone.0056632.g001
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always ignored in this work. At last, we normalized each feature

using the following formula:

Si,k,j~
Si,k,j

50{k{1
ð3Þ

For simplification purposes, we call the encoding used in this

work HH-CKSAAP.

Training the SVM Model and Extracting the Weights of
Amino Acid Pairs

The LIBSVM package (http://www.csie.ntu.edu.tw/,cjlin/

libsvm/) was used to train and test our SVM classification model

with five-fold cross validation tests. A linear kernel with the

parameters cost C~1 and tolerance of termination criterion

e~1|10{4 was used to establish the SVM model of BEAN.

For a linear SVM, we want to find the largest decision boundary

between two hyperplanes Pa and Pb

Pa : w!: x!zb~1 ð4Þ

Pb : w!: x!zb~{1 ð5Þ

where x! denotes the support vector and w! is its corresponding

weight vector. Using the dual Lagrange multiplier method, we can

obtain the decision hyperplane of linear SVM:

XN

i~1

liyi xi
!: x!

 !
zb~0 ð6Þ

Where li is the Lagrange multiplier, yi is the class label of the ith

training sample (if it belongs to a TTE yi~1, else yi~{1), xi
! is a

feature vector from the training samples, and N is the number of

training samples. We solve every li using the training dataset. For

a query protein, we take its feature vector x! into this formula to

decide its class label. We can use the following transformation to

obtain the weight of each feature:

w!~
XN

i~1

liyi xi
! ð7Þ

where li~0 if xi
! is not a support vector. Since 5-fold cross

validation tests based on 154 TTEs and 308 non-TTEs from

Wang et al.’s data were conducted in this work, five sets of

weighting values for the 1600 features can be calculated. For the

purpose of analysis, we only recorded the average weight for each

feature.

We further compared BEAN with other non-linear SVM

models based on polynomial, sigmoid and Gaussian kernels,

respectively. A grid search was used to optimize the parameters of

these non-linear models.

Performance Assessment
We used sensitivity, specificity and the Matthew correlation

coefficient (MCC) to evaluate the prediction performance. They

are defined as:

sensitivity~
TP

TPzFN
ð8Þ

specificity~
TN

TNzFP
ð9Þ

MCC

~
TP|TN{FN|FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFN)|(TNzFP)|(TPzFP)|(TNzFN)
p ð10Þ

where TP, FP, TN, and FN stand for the number of true positives,

the number of false positives, the number of true negatives and the

number of false negatives, respectively. The performance was also

comprehensively characterized through the receiver operating

characteristic (ROC) and precision-recall (PR) curves. The ROC

curve plots the true positive rate (i.e., sensitivity) as a function of

FPR (i.e., 1-specificity) for all possible thresholds, whereas the PR

curve plots precision (i.e., the number of true positives divided by

the sum of the true positives and false positives) as a function of

recall (i.e., sensitivity).The area under the ROC (auROC) and the

area under the PR curve (auPRC) were also calculated. The

performance of BEAN was assessed through 5-fold cross validation

tests.

Evolutionary Conservation Analysis of Amino Acid Pairs
We performed an evolutionary analysis of the first 50 residues in

154 TTEs from Data1. Only the analysis of those amino acid pairs

with positive weights was carried out. We took the MSAs of the

154 TTEs generated in the profile construction step as the input of

Rate4Site [37] to calculate residue conservation scores. We chose

empirical Bayesian methods to evaluate the conservation score of

each residue. The larger the score is, the less conserved the residue

is. In this work, we simply defined the conservation score of one

amino acid pair as the larger score of those two amino acids. If

there were fewer than five or more than 100 sequences in the MSA

of a TTE, we would discard this TTE in our analysis. In the case

that one amino acid pair appeared several times in the N-terminal

sequence of a TTE, we calculated the average value of all of the

corresponding scores. Furthermore, the values in different TTEs

were averaged once again.

Position Distribution Analysis of Amino Acid Pairs
The sequence position distribution of the top 50 positively

weighted amino acid pairs in TTEs and non-TTEs was carried

out, and only the first 50 N-terminal residues of a protein were

taken into account. For an amino acid pair aifkgaj starting from

the mth residue in a protein, we defined its sequence position as the

average position of the corresponding two amino acids. Since the

first amino acid located at the mth residue and the second amino

acid located at the (mzkz1)th residue of the protein sequence,

Pos(aifkgaj)~(mz(mzkz1))=2. For each amino acid pair, we

calculated its occurrence frequency in each possible position and

generated the corresponding sequence position distribution using a

Gaussian kernel with the default band width of the density

function in R (www.r-project.org). Moreover, the average

occurrence frequency of these 50 amino acid pairs in each

possible position was also counted, and a loess function with the

default parameters in R was used to plot the trend line of these 50

amino acid pairs’ overall distribution.

Prediction of Bacterial Type-III Effectors
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Results

The Performance of BEAN
Through 5-fold cross validation tests on Wang et al.’s data, we

systematically tested the prediction performance of BEAN based

on different combinations of two parameters related to the input

features [i.e., the largest k-spaced amino acid pairs (kmax) and the

length of N-terminal sequence (L)]. Our preliminary parameter

optimization showed that the best classification performance

corresponds to an MCC value of 0.78 (sensitivity = 78% and

specificity = 96%) when kmax is set to 3 and L is fixed at 50 and

there is no significant improvement of BEAN’s performance when

larger kmax and L were used. We got similar performance when we

trained and tested BEAN with the other four randomly sampled

negative datasets in Data1 (Table S1). We also tried three other

kernel functions provided by the LIBSVM package, including

polynomial, sigmoid and Gaussian kernels. We found that there is

no significant performance difference among these kernels

(Figure 2A).

We also implemented the other three feature extraction methods,

including the binary encoding, the simple composition of k-spaced

amino acid pairs (simple-CKSAAP) [27,31,33] and the PSI-BLAST

profile-based composition of k-spaced amino acid pairs (PSI-

CKSAAP) [30]. Regarding the binary encoding, each amino acid

from 50 N-terminal residues is represented as a 20 dimensional

binary vector, e.g., A (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), C

(0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), etc. Then, the total number

of 50|20~1000 features were used to train a SVM classification

model. With respect to simple-CKSAAP, the composition of amino

acid pairs is directly extracted from the query sequence. PSI-

CKSAAP encoding strategy is very similar to our method. Rather

than using HHblits in our method, PSI-CKSAAP only used PSI-

BLAST searching to construct the profile. As shown in Figure 2B,

the binary encoding, simple-CKSAAP, PSI-CKSAAP and HH-

CKSAAP achieved their average auROCs of 0.82, 0.89, 0.92 and

0.95, respectively. We observed all three k-spaced amino acids-

based encoding methods are much better than the binary encoding.

Since the binary encoding is a widely used sequence feature vector,

this observation suggested that the k-spaced amino acid pairs

capture more information related to T3SS signals in comparison to

classical sequence features.

To investigate the performance of different types of k-spaced

amino acid pairs in predicting TTEs, we used each type of k-

spaced amino acid pairs (k = 0, 1, 2 or 3) from simple-CKSAAP to

retrain a SVM model and we called the resulting four models as

exclusive-CKSAAP. With respect to exclusive-CKSAAP (k = 1),

for instance, we only considered amino acid pairs aif1gaj and

neglected aif0gaj , aif2gaj and aif3gaj . As shown in Figure S1,

exclusive-CKSAAP (k = 0) (i.e., dipeptide) achieved an accuracy

very close to simple-CKSAAP, and the other three exclusive-

CKSAAP encoding methods could also yield similarly good

performance. In other words, the joint use of different k-spaced

amino acid pairs (i.e., simple-CKSAAP) could only result in a very

limited performance improvement, which could be ascribed to the

weak complementary among different types of k-spaced amino

acid pairs. Thus, the combination of different k-spaced amino acid

pairs could not effectively increase the signal-to-noise ratio in

comparison to each exclusive-CKSAAP model. Even so, the

results also clearly suggested that each type of k-spaced amino acid

pairs contains effective type-III secretion signal information.

We also found both profile-based methods are better than

simple-CKSAAP. Comparatively, our method based on HHblits is

better than PSI-CKSAAP (Figure 2B). The performance differ-

ence implies that the sequence profile information is useful for

capturing conserved amino acid pairs and that a more sensitive

sequence searching algorithm (e.g., HHblits) can yield a more

powerful performance. Taken together, the above performance

comparison among different feature extraction methods clearly

demonstrated that the success of HH-CKSAAP in predicting

TTEs should be ascribed to both of the profile and k-spaced amino

acid pair information.

Predictive Amino Acid Pairs
To investigate the amino acid pairs that play dominant roles in

classifying TTEs and non-TTEs, we list the pairs having top-

ranked weights (i.e., the top 50 positively weighted pairs and the

top 50 negatively weighted pairs) in the established SVM model

(Table 1). The weight values represent the importance in the

decision process of SVM. Generally, the most positively weighted

pairs should be enriched in the N-terminal sequences of TTEs and

they are informative to discriminate query sequences as positive

samples. We observed that over 50% (28/50) of the amino acid

pairs in the top 50 positively weighted pairs are comprised of at

least one serine. Additionally, the co-located polar and uncharged

amino acid pairs also hold a strong majority in these 50 pairs

Figure 2. Classification performance of BEAN. (A) ROCs of different SVM kernel functions. (B) ROCs of different feature extraction methods. (C)
ROCs of classification models using all 1600 features and the 100 top weighted features. The values in brackets are the auROCs of each model. All of
above results are based on Wang’s data.
doi:10.1371/journal.pone.0056632.g002
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(Table 1). Less than 10% purely hydrophobic amino acid pairs

and less than 5% completely charged amino acid pairs were found

in the 50 pairs. In contrast, the most negatively weighted pairs are

generally depleted in the N-terminal sequences of TTEs, and they

should be regarded as useful features for classifying query

sequences as non-TTEs. We observed that the top 50 negatively

weighted pairs were dominated by hydrophobic amino acid pairs

and charged amino acid pairs.

The predictive amino acid pairs listed in Table 1 are well

consistent with previous studies related to the amino acid

propensities in the N-terminal sequences of TTEs and non-TTEs.

For instance, Arnold et al. found that serine is the most frequently

observed amino acid in the first 25 residues of TTEs, whereas both

acidic and alkaline amino acids are depleted in the N-terminal

sequences of TTEs in comparison to non-TTEs. Moreover, they

also found that amino acid combinations such as acidic-alkaline,

polar-polar are informative features in their prediction method

[14]. Samudrala et al. also identified some serine-related sequence

motifs from the N-terminal sequences of TTEs [15]. Compared

with the previous observations, we would like to emphasize that

our analysis based on the established linear SVM model placed a

greater emphasis on the systematical and comprehensive investi-

gation of the pivotal amino acid pairs from the viewpoint of

sequence motifs.

To test the discriminative power of the most predictive amino

acid pairs, we only used the 100 amino acid pairs (i.e., the top 50

positively weighted pairs plus the top 50 negatively weighted pairs)

to train a linear SVM model. As shown in Figure 2C, the SVM

model based on the most predictive features also reveals a very

competitive performance.

Predictive Amino Acid Pairs Tend to be More Conserved
in TTEs

To explore the relationship between the conservation of amino

acid pairs and their weights, we computed the evolutionary

conservation score of every positively weighted k-spaced amino

acid pair in TTEs. As shown in Figure 3, there is a weak but

significant linear correlation between amino acid pairs’ weights

and their conservation scores. We found the average Rate4site

conservation score of the 50 most predictive amino acid pairs is

significantly lower than that of the other amino acid pairs (0.47 vs.

0.54; Mann-Whitney U-test, p value ,0.05 ). Generally, more

positively weighted pairs tend to be more conserved, implying that

these predictive amino pairs may form some relatively conserved

sequence motifs. We also note that most of the amino acid pairs

have Rate4Site scores larger than zero (Figure 3), confirming that

positive selection is common in the N-terminal residues of TTEs.

This mutation-prone selection further explains the difficulty of

Table 1. The top 50 positively and negatively weighted k-spaced amino acid pairs.a

Rank Pair(+) Weight Pair(2) Weight Rank Pair(+) Weight Pair(2) Weight

1 S…Q 0.81 RR 20.75 26 G.S 0.47 A.I 20.27

2 S.S 0.70 A.I 20.61 27 S…T 0.46 PW 20.27

3 SL 0.68 LI 20.49 28 I.R 0.46 DY 20.27

4 P…P 0.64 R.R 20.42 29 R.E 0.46 Y…G 20.27

5 LS 0.63 L.L 20.41 30 V…S 0.45 RP 20.26

6 G.Q 0.62 C…P 20.40 31 A.K 0.45 W…C 20.26

7 S.S 0.62 PK 20.38 32 P…S 0.45 R.D 20.26

8 S.N 0.62 R.G 20.37 33 Q.F 0.45 F…R 20.25

9 SS 0.62 R…R 20.36 34 P.S 0.44 R.L 20.24

10 PS 0.61 LL 20.36 35 Q.P 0.44 F.L 20.24

11 S…S 0.60 L.A 20.36 36 I.S 0.44 V…H 20.24

12 Q.P 0.57 K.G 20.35 37 N.Q 0.43 YY 20.24

13 S…P 0.56 H…Y 20.35 38 N…S 0.43 T.R 20.24

14 SN 0.56 AC 20.34 39 G…P 0.43 F.V 20.23

15 IQ 0.55 A.F 20.34 40 S.T 0.42 R…G 20.23

16 R.G 0.55 Y…R 20.33 41 QG 0.42 FY 20.23

17 S.T 0.55 E.E 20.33 42 A…S 0.42 K.A 20.23

18 A.S 0.53 I.E 20.33 43 GP 0.41 E.Q 20.22

19 S.N 0.53 I.R 20.31 44 P.G 0.41 E.Y 20.22

20 NH 0.51 L…I 20.31 45 S.Q 0.40 F.D 20.22

21 VA 0.51 LV 20.30 46 I.K 0.40 MA 20.22

22 P.P 0.50 AF 20.29 47 S…G 0.40 V.F 20.22

23 QT 0.49 T.Y 20.29 48 S.A 0.40 K.K 20.22

24 A.S 0.49 L.E 20.29 49 AS 0.40 K…Y 20.22

25 T.V 0.47 R.C 20.28 50 N.F 0.39 RL 20.22

a‘‘+’’ indicates a positively weighted pair, ‘‘2’’ denotes a negatively weighted pair, and ‘‘.’’ stands for any amino acid. Of the top-50 positively weighted amino acid pairs,
12, 15, 12 and 11 is from k = 0, 1, 2, and 3, respectively. Regarding the top-50 negatively weighted amino acid pairs, the corresponding number of amino acid pairs is 15,
13, 11 and 11, respectively.
doi:10.1371/journal.pone.0056632.t001
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directly identifying conserved sequence motifs from the MSAs of

TTEs.

Predictive Amino Acid Pairs Show Different Position
Distributions between TTEs and non-TTEs

We analyzed the position distribution bias of the 50 most

positively weighted amino acid pairs. Rather than being

distributed promiscuously within the N-terminal sequences,

these predictive amino acid pairs tend to occur at particular

regions, which can facilitate the incorporation of some amino

acid pairs into type-III secretion signal-related sequence motifs.

As shown in Figure 4A, these 50 pairs tend to occur at the first

30 N-terminal residues of TTEs in comparison to the

corresponding distributions in non-TTEs. The position distribu-

tions of individual pairs shows that, for most of these 50 pairs,

there is a dominant density peak within the first 30 residues of

the N-terminal sequences (Figure S2). In particular, the

distribution distinction is very clear for some pairs related to

serine. For example, the position density distribution of amino

acid pair [SN] (rank = 14) shows a steep peak within the 10–

15th residues in TTEs, but there is only a flat peak near the

40th residue in non-TTEs (Figure 4B). The amino acid pair

[S…P] (rank = 13) obviously appears within the 10–25th residues

in TTEs, whereas it clusters within the 30–50th residues in non-

TTEs (Figure S2). This clear distribution difference is also

observed in some pairs containing no serine, such as [T.V]

(rank = 25) (Figure 4C). We found a hydrophobic amino acid

pair [VA] (rank = 21) that obviously tends to occur at the end of

the first 50 residues in TTEs (Figure 4D). Recently, Costa et al.

identified a sequence motif consisting of hydrophobic amino

acids in the 30–50th N-terminal residues of 15 TTEs, which is

obligatory for completing type-III secretion [38]. Therefore, we

believe that the 30–50th residues should contain useful

information about type-III secretion signals, and it is necessary

to include these residues in our classification model, although

only the first 30 residues were used in some existing predictors

[14,15].

Comparison of BEAN and Four Existing Machine
Learning-based Prediction Methods

To facilitate the community, we have made BEAN freely

available at http://protein.cau.edu.cn:8080/bean/. Note that the

current predictor implemented in the BEAN webserver was

trained on the whole dataset of Wang et al. (2011) [10]. We

compared BEAN with four existing TTE predictors (i.e.,

EffectiveT3, SIEVE, ANN and BPBAac) based on an independent

dataset (i.e., Data2). The EffectiveT3 and BPBAac software

packages were downloaded from their websites and their

performance on Data2 was tested in our local machine. Because

stand-alone packages of ANN and SIEVE are not available, we

submitted the sequences in Data2 directly to their webservers to

obtain the prediction results. Note that only the EffectiveT3 model

trained for both animal and plant pathogens was used for

comparison. As shown in Figure 5, BEAN achieved a successful

performance with an auROC value of 0.97 (auPRC = 0.93), which

is considerably better than the other four methods.

We further investigated the performance of these five predictors

on some special examples. Recently, 15 TTEs, which were not

included in Data2 and only three of them were included in Data1,

were characterized to contain a type-III secretion associated

functional motif in the first 30,50th residues [38]. Since these 15

TTEs could not be successfully identified by some known machine

learning methods [38], they are regarded as hard TTE samples.

Interestingly, we found BEAN predicted 13 TTEs correctly when

FPR was set to 5%. Using the same FPR control, ANN, SIEVE,

BPBAac and EffectivT3 only correctly predicted 10, 8, 8 and 8

TTEs, respectively. We also focused on the prediction of 14 non-

TTEs in Data2. These 14 proteins share high sequence identity

with known TTEs, but experimental results have clearly shown

that they can not be transported into host cells [39].Therefore,

these 14 proteins should be regarded as hard non-TTE samples.

Unfortunately, all of the five methods (BEAN, ANN, SIEVE,

BPBAac and EffectivT3) can only correctly predict 7, 9, 7, 6 and 8,

respectively. The poor prediction performance on these 14 non-

TTEs indicates the current methods are still heavily dependent on

the knowledge of known TTE sequences, which could limit these

methods’ practical application to some extent. Furthermore, we

observed that 12 non-TTEs were correctly predicted by at least

one predictor, suggesting that these five predictors’ performances

were complementary to some extent. We further used a majority

vote strategy to integrate these five predictors, in which we took a

sample as non-TTE (or TTE) if it was predicted as non-TTE (or

TTE) in at least three predictors. Finally, the combined predictor

successfully identified 10 non-TTEs. Although the accuracy

improvement is limited in this case, the results showed that the

combination of different predictors is a reasonable way to obtain

better performance on hard samples.

Considering that existing predictors were generally developed

using different datasets, performance comparison based on an

independent test set is still subjective to some extent. For instance,

we may argue that the improved performance of BEAN could be

caused by a larger training set in comparison to some existing

methods (e.g., EffectiveT3). We retrained BEAN using 92 non-

redundant TTEs from the training data of EffectiveT3 and 184

randomly sampled non-TTEs from Wang et al.’s data [10], and

tested this new classification model on Data2. In terms of auROC

and auPRC, we still observed that BEAN can outperform the

existing four methods, although its performance was slightly

decreased (Figure S3). This result demonstrates that the improved

Figure 3. Conservation of positively weighted k-spaced amino
acid pairs. A lower Rate4Site score corresponds to a more conserved
amino acid pair.
doi:10.1371/journal.pone.0056632.g003
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performance of BEAN should be ascribed to the new methodology

it adopts rather than the choice of the training dataset.

Genome-wide TTE Identification in R. solanacearum
We conducted a genome-wide TTE identification in R.

solanacearum. As one gram-negative bacterium, R. solanacearum can

lead to bacterial wilt in tomato, banana and potato. The

sequencing of the genome of R. solanacearum GMI1000 was

completed in 2002 [40]. The protein sequences of R. solanacearum

were downloaded from Uniprot, and the corresponding number of

proteins is 4824. The prediction was performed only on those

proteins containing more than 51 residues. Interestingly, 5 out of

the 50 predicted TTEs with the highest prediction scores were

experimentally validated and 24 predicted TTEs were annotated

as putative TTEs in Uniprot (Table S2), implying that the

performance of our prediction results should be generally good.

It’s worth noting that known TTEs in R. solanacearum are not

included in BEAN’s train dataset. Therefore, BEAN should be

generally applicable to predict TTEs from newly sequenced

pathogen genomes.

To further provide an indirect assessment of our prediction

results, we downloaded the microarray data of R. solanacearum from

NCBI Gene Expression Omnibus (GEO), with the series number

GSE33657. In this microarray experiment, the genome-wide

mRNA expression level changes of R. solanacearum were measured

when bacteria were cultured in rich medium CPG (Casamino

acid-Peptone-Glucose) and tomato cell at 28uC. The limma

package from Bioconductor (http://www.bioconductor.org/) was

used to perform gene differential expression analysis. If a probe

Figure 4. Sequence position distribution of k-spaced amino acid pairs. (A) Each point represents the overall frequency of the 50 most
positively weighted amino acid pairs occurring at the N-terminal sequences from TTEs (red triangle) or non-TTEs (blue circle). Trend lines are drawn
using loess smoothing for the points from TTEs (red) and non-TTEs (blue), respectively. (B–D) Position density distribution of pairs [SN], [T.V] and [VA]
in TTEs (red solid line) and non-TTEs (blue dotted line). The horizontal axis in (B–D) is the same as in (A).
doi:10.1371/journal.pone.0056632.g004
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could not be mapped on any protein entry record from Uniprot,

we ignored it when drawing the gene expression distribution. A

Mann-Whitney U-test was used to conduct differential expression

significance analysis between gene groups with different SVM

output scores. Interestingly, we observed that genes with higher

prediction scores tend to be upregulated when cultured in tomato

(Figure 6). Therefore, the results of this investigation of gene

expression difference partly validate the effectiveness of BEAN in

identifying TTEs at the whole genome level.

Considering only a very small fraction of proteins in a genome

are TTEs, we might underestimate the FPR of prediction results

when we apply BEAN on a whole genome level. For each

prediction result, therefore, we also provided a posterior proba-

bility at the genome level based on Bayes theorem (see Table S2,

Text S1). The posterior probability can be used to further evaluate

the reliability of a prediction result.

Discussion

Type-III Secretion Signals and Weakly Conserved Motifs
Although bacterial TTEs evolve at a high speed under the

strong evolutionary selection stress from the host immune system,

T3SS is relatively conserved [41] and different TTEs can be

secreted by the same T3SS. Until now, the exact form of the Type-

III secretion signal remains largely unknown. Although the

hypothesis that Type-III secretion signals could be comprised of

some sequence motifs has been proposed, previous studies could

not successfully identify the sequence motifs from the MSA of

type-III effectors, which may be ascribed to the sequence diversity

of TTEs driven by the high evolutionary rate obscuring the form

of sequence motifs in type-III secretion signals.

In this work, we developed BEAN based on the composition of

k-spaced amino acid pairs. Because amino acid pairs can be

regarded as the essential elements of sequence motifs, the high

accuracy of BEAN partly confirmed the important role of

sequence motifs in type-III secretion signals. We also note that

the success of BEAN should be ascribed to the use of profile-based

composition, which can effectively capture the evolutionary

information of amino acid pairs from the homologues of TTEs,

as the input for BEAN. This further suggested that Type-III

secretion signal-related motifs should be weakly conserved, which

can be exemplified by the following two examples related to

computationally or experimentally identified sequence motifs. As

reported in [15], Samudrala et al. identified two conserved

sequence motifs from the first 30 residues of TTEs through

statistical analysis. Interestingly, we found some amino acid pairs

from these two motifs, such as [S.S], [SS] and [N…S], can also be

found in our 50 most positively weighted amino acid pairs. Very

recently, Costa et al. identified a sequence motif [LMIF…I-

V.IV.N] that was located in the 30–50th N-terminal residues of 15

TTEs [38]. Because this motif has been proven to interact with

chaperones involved in type-III secretion, it was named the

conserved chaperone-binding domain (CCBD). Considering that

the CCBD motif might be applicable in a limited number of

TTEs, it is worth noting that we only observed one amino acid

pair [V.N] from the CCBD motif appearing in our top 100 most

positively weighted amino acid pairs (Rank = 60). It should be

emphasized that there are only very limited motif cases found to be

related with type-III secretion process, thus the association

between potential type-III secretion signal related motifs and the

predictive k-spaced amino acid pairs identified in this work need to

be further tested with more experimentally verified TTEs.

Composition of Type-III Secretion Signals
For some TTEs, the secretion signal may contain different types

of motifs. The functional roles and position distribution could be

different. The position distribution analysis of amino acid pairs

shows that many of the 50 most important amino acid pairs we

identified from TTEs tend to occur within the first 30 N-terminal

residues (Figure 4), which have been proven to be enough for

successful type-III secretion in some effectors [17,18]. These

informative N-terminal amino acid pairs primarily consisted of

serine and other polar amino acids, suggesting that the secretion

Figure 5. Comparison of different TTE predictors on the
independent test set. (A) ROCs of five different methods. The values
in the brackets are the average auROCs of each method. (B) Precision-
recall curves of five different methods. Values in brackets are the
average auPRCs of each method.
doi:10.1371/journal.pone.0056632.g005
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signal in this region should contain motifs enriched in serine or

other polar residues.

We also note that some hydrophobic amino acid pairs (e.g.,

[VA]) are prone to appear in the 30–45th residues, suggesting that

hydrophobic short motif-related secretion signals should exist in

this region. Generally, hydrophobic short motifs can mediate

protein-protein interactions [24]. Similar to the CCBD motif,

these hydrophobic short motifs in the 30–50th N-terminal residues

may also serve as chaperone binding motifs. Although chaperone

binding motifs are obligatory for the successful type-III secretion

process of some TTEs, their functional roles in the recognition

between TTEs and type-III secretion systems have not been fully

deciphered [41]. Recently, Galán and co-workers demonstrated

that some TTEs from Salmonella enterica serovar Typhimurium can

be sorted through customized chaperones before secretion to

determine the order of passing T3SS [42]. Combining these

experimental discoveries and our analysis, we argue that type-III

secretion might contain a composite signal, including the first level

signal within the front of N-terminal sequences and the second

level signal within the tail of N-terminal sequences. The first level

signal consists of polar amino acids, which are a common feature

for most TTEs. The second level signal that contains hydrophobic

motifs might be customized for different TTEs to interact with

their specific chaperones. It is possible that type-III secretion is an

integrated result of a multiple-step recognition process.

Future Work
To the best of our knowledge, all of the current machine

learning-based TTE predictors (including BEAN) only consider

two classes of proteins (i.e., TTEs and non-TTEs) and do not

classify TTEs into different sub-types. This simple binary

classification might be not very reasonable provided that the

mechanisms of type-III secretion signal recognition are slightly

different in different TTEs. Thanks to the research community’s

efforts, experimentally verified TTEs are increasing rapidly. A

comprehensive and hierarchical TTE classification system will be

highly desirable. Undoubtedly, this will be very helpful for

unveiling the secret of TTE secretion signals and developing

customized prediction models for each TTE type.

Supporting Information

Figure S1 Performance of each type of k-spaced amino acid

pairs. We exclusively used each type of k-spaced amino acid pairs

(i.e., k = 0, 1, 2 or 3 was individually used) to train the

corresponding predictive model and we called the resulting four

SVM models as exclusive-CKSAAP. The dipeptide encoding can

be regarded as exclusive-CKSAAP (k = 0). The values in brackets

are the auROCs of different SVM models.

(TIFF)

Figure 6. Gene differential expression distribution of prediction results. The vertical axis represents the fold changes of the gene
expression level when R. solanacearum is cultured in tomato (planta) in comparison to the situation when R. solanacearum is cultured in rich medium
(CPG). The number in the bracket is the gene number within this score interval. The statistically significant expression difference is observed between
genes with SVM scores ,0 and genes with SVM scores $1.0 (Mann-Whitney U-test, p-value ,0.01).
doi:10.1371/journal.pone.0056632.g006

Prediction of Bacterial Type-III Effectors

PLOS ONE | www.plosone.org 10 February 2013 | Volume 8 | Issue 2 | e56632



Figure S2 Position density distribution of the 50 most predictive

k-spaced amino acid pairs. Red lines stands for amino acid pairs in

TTEs and blue lines stands for amino acid pairs in non-TTEs. The

horizontal and vertical axes are the same as in Figure 4.

(PDF)

Figure S3 Performance of BEAN on Data2 when BEAN’s

classification model was retrained with EffectiveT3 dataset. (A)
ROCs of five different methods. The values in the brackets are the

average auROCs of each method (or classification model). (B)
Precision-recall curves of five different methods. Values in brackets

are the average auPRCs of each method (or classification model).

(TIFF)

Table S1 The performance of BEAN using different negative

samples.

(DOC)

Table S2 BEAN’s top 50 prediction results on the whole

genome of Ralstonia solanacearum GMI1000.

(DOC)

Text S1 Estimation of a prediction result’s posterior probability

at the genome level.

(DOC)

Dataset S1 Protein sequences in Data1. This dataset includes

462 sequences from Wang et al.’s data and four groups of non-

redundant non-TTEs sequences (308 sequences for each group)

randomly sampled from gram-negative pathogenic bacterial

proteomes.

(ZIP)

Dataset S2 Protein sequences in Data2. This dataset includes

109 newly identified TTEs and 14 experimentally validated non-

TTEs collected manually from literature published after January

2011, and five groups of non-TTEs sequences (200 sequences for

each group) randomly sampled from gram-negative pathogenic

bacterial proteomes.

(ZIP)
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