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Abstract
Background: Machine learning-based methods have been proven to be powerful in developing
new fold recognition tools. In our previous work [Zhang, Kochhar and Grigorov (2005) Protein
Science, 14: 431-444], a machine learning-based method called DescFold was established by using
Support Vector Machines (SVMs) to combine the following four descriptors: a profile-sequence-
alignment-based descriptor using Psi-blast e-values and bit scores, a sequence-profile-alignment-
based descriptor using Rps-blast e-values and bit scores, a descriptor based on secondary structure
element alignment (SSEA), and a descriptor based on the occurrence of PROSITE functional motifs.
In this work, we focus on the improvement of DescFold by incorporating more powerful
descriptors and setting up a user-friendly web server.

Results: In seeking more powerful descriptors, the profile-profile alignment score generated from
the COMPASS algorithm was first considered as a new descriptor (i.e., PPA). When considering a
profile-profile alignment between two proteins in the context of fold recognition, one protein is
regarded as a template (i.e., its 3D structure is known). Instead of a sequence profile derived from
a Psi-blast search, a structure-seeded profile for the template protein was generated by searching
its structural neighbors with the assistance of the TM-align structural alignment algorithm.
Moreover, the COMPASS algorithm was used again to derive a profile-structural-profile-alignment-
based descriptor (i.e., PSPA). We trained and tested the new DescFold in a total of 1,835 highly
diverse proteins extracted from the SCOP 1.73 version. When the PPA and PSPA descriptors were
introduced, the new DescFold boosts the performance of fold recognition substantially. Using the
SCOP_1.73_40% dataset as the fold library, the DescFold web server based on the trained SVM
models was further constructed. To provide a large-scale test for the new DescFold, a stringent
test set of 1,866 proteins were selected from the SCOP 1.75 version. At a less than 5% false
positive rate control, the new DescFold is able to correctly recognize structural homologs at the
fold level for nearly 46% test proteins. Additionally, we also benchmarked the DescFold method
against several well-established fold recognition algorithms through the LiveBench targets and
Lindahl dataset.

Conclusions: The new DescFold method was intensively benchmarked to have very competitive
performance compared with some well-established fold recognition methods, suggesting that it can
serve as a useful tool to assist in template-based protein structure prediction. The DescFold server
is freely accessible at http://202.112.170.199/DescFold/index.html.

Published: 14 December 2009

BMC Bioinformatics 2009, 10:416 doi:10.1186/1471-2105-10-416

Received: 9 July 2009
Accepted: 14 December 2009

This article is available from: http://www.biomedcentral.com/1471-2105/10/416

© 2009 Yan et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 14
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10/416
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20003426
http://202.112.170.199/DescFold/index.html
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2009, 10:416 http://www.biomedcentral.com/1471-2105/10/416
Background
Template-based protein structure prediction methods
(often known as comparative modeling and fold recogni-
tion) typically involve the following three steps. First, a
(remote) homologous protein with known structure is
identified as a template for a query sequence. The second
step is to obtain an optimal alignment between the query
sequence and the template sequence. Finally, a refined 3D
model of the query protein can be generated based on the
template structure. With more and more protein structural
templates deposited in the current PDB database http://
www.rcsb.org/pdb/home/home.do, template-based
methods are increasingly powerful and their applications
to many aspects of life sciences are widely explored [1].

The key step in template-based methods is to identify a
structure template that shares a similar 3D structure with
the query sequence. When the query protein shares signif-
icant sequence similarity with the template, classical
sequence alignment methods, such as Blast [2], FASTA [3],
Smith-Waterman [4] or Needleman-Wunsch [5] dynamic
programming algorithm, are suitable and accurate in
detecting their homologous relationship. Generally, the
template-based method for dealing with such "easy" tem-
plates is referred to as comparative modeling. However,
proteins with weak sequence similarity are also frequently
found to share similar 3D folds. Such remote homology
relationships can be hard to detect with classical sequence
alignment methods. To find a template that shares only
remote homology with the query protein, some profile-
sequence (or sequence-profile) alignment methods like
Psi-blast [6], Rps-blast [6], Impala [7], and Hidden
Markov Models (HMM) [8] have been used, and they
often result in a marked improvement. Nevertheless, the
profile-sequence (or sequence-profile) alignment meth-
ods also perform poorly when the investigated protein
pairs are situated in the twilight or midnight zone [9]. A
lot of efforts have therefore been deployed to develop
more sensitive and powerful remote homology detection
techniques, called fold recognition. During the last dec-
ade, fold recognition has received considerable attention
and a variety of elegant fold recognition methods (e.g.,
FFAS [10], 3D-PSSM [11], Fugue [12], mGenThreader
[13], ORFeus [14], MUSTER [15], and SP5 [16]) have
been developed. The overall good performance of these
techniques has been widely demonstrated in the CASP
[17] and CAFASP [18] competitions as well as in real-time
LiveBench experiments [19].

The basic strategy of fold recognition methods consists in
comparing the query sequence with all the structures
within a fold library. According to the measured compat-
ibility between sequence and structure, the fold recogni-
tion method can identify the template with the best fit.
The well-established fold recognition methods can be

roughly grouped into three main categories: (1) structure-
seeded profile-based; (2) profile-profile alignment-based;
and (3) machine learning methods-based. In the first cat-
egory, 3D-PSSM and Fugue are probably the two best-
known representative algorithms. For instance, 3D-PSSM
is based on a hybrid fold recognition approach using
sequence profiles and structure-seeded profiles (i.e., 3D
profiles) coupled with predicted secondary structure
information and solvation potential [11]. Grouped into
the second category, the profile-profile alignment meth-
ods have recently been proven to be very powerful in
remote homology identification as well as in generating
accurate sequence alignments [20,21]. Generally, the pro-
file-profile alignment method uses dynamic program-
ming to obtain a direct alignment between two sequence
profiles through Psi-blast searching [22,23]. To improve
the performance of the profile-profile alignment, the
structural information (e.g., predicted secondary struc-
tural information) was also frequently added to measure
the similarity of two positional vectors [14,16]. In the
third category, machine learning-based methods were
employed to combine different sequence and structural
information into fold recognition systems [13,24-27]. In
mGenThreader [13], for instance, a neural network was
used to combine pair-wise potentials, solvation poten-
tials, and various alignment parameters. In the past sev-
eral years, Support Vector Machines (SVMs) have also
been widely used to build binary classifiers, which can
allow the prediction of whether a sequence belongs to a
single structural fold or not. Provided there are sufficient
data in different protein folds, a set of binary classifiers
can be trained and integrated into a fold recognition sys-
tem (i.e. a multi-class predictor). A key step to establish an
SVM classifier is to find effective kernel functions, which
measure the similarity between any pair of protein
sequences. There are some established kernel functions
such as spectral kernel [28], profile-based string kernel
[29], and mismatch string kernel [30].

A machine learning-based fold recognition method called
DescFold was developed in our previous work [24]. In
DescFold, any measurement between two proteins or any
feature vector extracted from a protein sequence can be
defined as a descriptor. For example, the amino acid com-
position of a protein can be regarded as a descriptor; the
e-value obtained from a Blast search of protein A against
protein B can also be considered as a descriptor between
A and B. Based on such a broad definition, thirteen
descriptors' fold identification capabilities were evaluated
and four optimal descriptors were selected to construct
the original version of DescFold with the assistance of
SVMs. Although SVMs were frequently used to build dis-
criminative models between various protein folds [27], it
should be emphasized that the SVMs here were employed
to distinguish structurally similar and dissimilar protein
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pairs. The four implemented descriptors were a profile-
sequence-alignment-based descriptor using Psi-blast e-
values and bit scores, a sequence-profile-alignment-based
descriptor using Rps-blast e-values and bit scores, a
descriptor based on the alignment of secondary structural
elements (SSEA), and a descriptor based on the occur-
rence of PROSITE functional motifs [31]. Although the
original DescFold was reported to significantly outper-
form a standard Psi-blast search, it showed weaker per-
formance than some well-established methods when
tested on the LiveBench-8 targets [24].

In the present study, we focus on developing an improved
DescFold method through the following efforts. First, a
profile-profile-alignment-based (PPA) descriptor was
incorporated into the new DescFold method. Of the exist-
ing profile-profile alignment algorithms, COMPASS is
one of the best-performing methods, and possess good
computational efficiency [23]. Additionally, COMPASS is
freely accessible to the community. In this work, the align-
ment scores resulting from the COMPASS algorithm
[23,32] were defined as a PPA descriptor between a
sequence pair. In the context of fold recognition, one of
the aligned two sequences is regarded as a template,
meaning that a structure-seeded profile is available for the
template, which may contain different evolutionary infor-
mation than a sequence profile derived from its homolo-
gous sequences. Moreover, the structure-seeded profile for
the template sequence was generated by searching its
structural neighbors with the assistance of TM-align [33].
Again, the COMPASS algorithm was further used to derive
a profile-structural-profile-alignment-based descriptor
(i.e., PSPA). Finally, we also set up a user-friendly web
server for DescFold, and have made it freely accessible to
the research community. Here, we present details on the
improvement resulting from two newly introduced pro-
file-profile alignment related descriptors, the construction
of the DescFold web server, and the intensive benchmark
results of testing DescFold against some state-of-the-art
fold recognition methods.

Results and Discussion
The performance of individual descriptors based on the 
SCOP_1.73_1835 dataset
Based on the SCOP 1.73 version [34], we compiled a total
of 1,835 sequence-dissimilar but structurally related pro-
teins into a highly diverse protein dataset named
SCOP_1.73_1835. Then, we used the SCOP_1.73_1835
dataset to benchmark the six different descriptor types in
leave-one-out fold identification experiments. Each time,
a protein in SCOP_1.73_1835 was selected as a "test" pro-
tein and the remaining proteins were regarded as a fold
library. By calculating the pair-wise similarity scores
defined in different descriptors, the "test" protein was
scanned against the fold library and the protein with the

most significant similarity score (i.e., the top hit) was
recorded. In case the top hit and the test protein belong to
the same SCOP superfamily, a correct fold identification
was assigned. When the above experiment is performed
over all the SCOP_1.73_1835 proteins, a descriptor's per-
formance can be simply quantified in terms of sensitivity
by counting the number of proteins with correctly identi-
fied structural homologs. More details about the construc-
tion of the different types of descriptors and the
compilation of the SCOP_1.73_1835 dataset are outlined
in the Methods section.

The sensitivities of fold identification using different
descriptors are listed in Table 1. Of the four descriptors
used in the original DescFold, the performance of the Rps-
blast- and Psi-blast-based descriptors yield a sensitivity of
37.49% and 36.84%, respectively. Predicted secondary
structure has been proven to be useful in protein fold rec-
ognition/classification [35], which can be effectively
encoded by the SSEA-based descriptor [13,24,36]. The
SSEA-based descriptor allows a correct identification rate
of 28.56%. The motif-based descriptor is only able to gen-
erate successful fold identification for approximately 20%
of the total protein sequences. Generally, the performance
ranking of these four descriptors is in good agreement
with the results from our previous study, although the
descriptors were evaluated over two different datasets.

By capturing evolutionary information about residue pref-
erences at different sequence positions in two profiles,
profile-profile alignment has been shown to be very pow-
erful in fold identification. Compared with the aforemen-
tioned four descriptors, the two profile-profile alignment
related descriptors achieve better performance, and both
descriptors allow successful fold identification for more
than 50% of the tested protein sequences. Comparatively,
the PPA descriptor is more powerful, and it outperforms
the PSPA descriptor by nearly two percentiles (Table 1).
Regarding the PSPA descriptor, the profile for one protein
is derived from structural alignment results, which may
contain different evolutionary information than the
sequence profile inferred from the Psi-blast search results.
By further combining the PPA and PSPA descriptors into

Table 1: Sensitivity of fold recognition based on individual 
descriptors.

Descriptors Sensitivity

SSEA 524/1835 = 28.56%
Psi-blast 676/1835 = 36.84%
Rps-blast 688/1835 = 37.49%
Motif 360/1835 = 19.62%
PPA 1083/1835 = 59.02%
PSPA 1052/1835 = 57.33%
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our DescFold system, it is hoped that the overall perform-
ance of DescFold will be considerably improved.

The overall performance of DescFold based on the 
SCOP_1.73_1835 dataset
The same strategy we used to evaluate the individual
descriptors was used to assess the performance of Desc-
Fold (Table 2). For the purpose of comparison, computa-
tional experiments based on a combination of different
descriptors were conducted. As shown in Table 2, the orig-
inal DescFold (i.e., the results based on the SSEA-, Psi-
blast-, Rps-blast-, and motif-based descriptors) can result
in a sensitivity of about 56%. Representing local sequence
features of proteins, the motif-based descriptor is align-
ment independent, implying that it should be comple-
mentary to the other alignment related descriptors. This
can be clearly demonstrated by a 4% lower sensitivity
when the motif-based descriptor was removed from the
original DescFold system.

As expected, the two profile-profile alignment related
descriptors do provide considerable contributions to the
new DescFold method, with has a nearly 16% higher sen-
sitivity than that of the original DescFold. When the PSPA
descriptor was not included in the DescFold system, a
nearly 4% lower sensitivity was obtained, implying that
the evolutionary information deposited in the two pro-
file-profile alignment related descriptors are complemen-
tary to some extent. Moreover, a receiver operating
characteristic (ROC) [37] curve, which plots true positive
instances as a function of false positive instances for all
possible thresholds, was also employed to measure the
performance of the new version of DescFold. The
improvement of DescFold resulting from the introduction
of the PPA and PSPA descriptors is further revealed in the
ROC curve (Figure 1). At a less than 5% false positive rate
(i.e., 92 false positive instances) control, the new Desc-
Fold method is able to correctly recognize folds for
60.49% proteins, whereas only 46.16% proteins are suc-
cessfully identified by the original DescFold method.

The above evaluation only reflects fold identification per-
formance based on the generated top hits. As a more com-
prehensive evaluation, we also assessed DescFold's
remote homology identification for all the protein pairs

within the SCOP_1.73_1835 dataset via ROC analysis. As
shown in Figure 2, the performance of DescFold when
combining different descriptors has the same characteris-
tics as the corresponding ROC curves in Figure 1. Addi-
tionally, the performance can be further quantified by the
AUC and ROCn scores. The AUC score represents the cor-
responding area under the whole ROC curve, while the
ROCn score is the area under the ROC curve up to the first
n false positives. Since we pay more attention on the per-
formance at low false positive rates, the ROCn score is
more useful for practical applications. In addition to the
AUC score, the ROC16,744, ROC83,720, and
ROC167,440 scores (i.e., the ROCn values at 1%, 5%, and
10% false positive rates, respectively) are also listed in
Table 3. At a less than 5% false positive rate control, the
corresponding ROC83,720 score resulting from the new
DescFold is approximately 0.008 higher than that of the
original one (Table 3). Considering the corresponding
sensitivity at this false positive rate control, the new Desc-
Fold is able to correctly identify approximately 69% of
structurally similar protein pairs, providing an additional
15% improvement compared with the original DescFold
(Table 3).

The performance of DescFold is further exemplified in the
remote homology identification between two protein
domains from the SCOP_1.73_1835 dataset (SCOP
entries: d2al3a1 and d1hmsa_). Although d2a13a1 (a
hypothetical protein from Arabidopsis thaliana) shares
weak sequence similarity with d1hmsa (a muscle fatty
acid binding protein from Homo sapiens), they are struc-
tural homologs (Figure 3) and belong to the same SCOP
superfamily (lipocalins, SCOP superfamily index: b.60.1).
When we searched d2a13a1 against the remaining 1,834
sequences using any individual descriptor, its superfamily
partner (i.e., d1hmsa_) could not be ranked as the top hit.
However, d1hmsa could be successfully assigned as the
top hit when the search was carried out using our new
DescFold.

The DescFold web server and a large-scale benchmarking 
experiment on the SCOP_1.75_1866 dataset
Using the SCOP_1.73_40% dataset as the fold library, the
DescFold web server was set up and is freely accessible at
http://202.112.170.199/DescFold/index.html. Currently,

Table 2: Sensitivity of DescFold using different descriptorsa.

Descriptors included Sensitivity 

SSEA + Psi-blast + Rps-blast 937/1835 = 51.06%
SSEA + Psi-blast + Rps-blast + motif 1025/1835 = 55.86%
SSEA + Psi-blast + Rps-blast + motif + PPA 1248/1835 = 68.01%
SSEA + Psi-blast + Rps-blast + motif + PPA + PSPA 1322/1835 = 72.04%

aThe evaluation reflects fold identification performance of all proteins in the SCOP_1.73_1835 dataset. For each protein, only the generated top hit 
was taken into account.
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a four-CPU DELL Linux machine with 16 GB of main
memory hosts the DescFold web server. Generally, the
computational time required for recognizing a protein's
fold is reasonable for the current DescFold server; it takes
about ten minutes to process a query sequence of 500
amino acids. Figure 4A is the submission page of the web
server, and users can simply paste a protein sequence or
upload a sequence file on this page to initiate the fold rec-
ognition process. When the recognition process is com-
plete, users will be notified by e-mail. In the result page for
fold recognition (Figure 4B), the top hits' Z-Scores, SCOP
entries, sequence files and PDB files are listed. To quanti-
tatively understand the reliability of the identified tem-
plates, we point out the confidence levels for different
hits. Based on the current remote homology identification
tests for all the protein pairs within the SCOP_1.73_1835
dataset (Figure 2), it was estimated that a Z-Score ≥ 10.0
yields a ≤ 1% error rate (i.e., 99% confidence level) and a
Z-Score ≥ 6.0 indicates a ≤ 5% error rate (i.e., 95% confi-
dence level). Moreover, the scores for all descriptors and
sequence alignments generated from Psi-blast, Rps-blast,
SSEA, PPA and PSPA are also listed in the result page,

which can allow users to further judge the identified tem-
plates are correct or not. Among these sequence align-
ments, the PPA alignment based on the COMPASS
algorithm is recommended to be used to obtain a 3D
model for the query sequence with the assistance of some
comparative modelling packages.

By taking a similar strategy as reported in the literature of
Auto-SCOP [38], we used a newer SCOP version (i.e.,
SCOP 1.75) to provide a large-scale benchmark for the
current DescFold web server. 1,866 proteins were selected
from SCOP 1.75 and compiled into a test dataset called
SCOP_1.75_1866, which covers 171 different folds and
246 different superfamilies. All the 1,866 proteins share
weak sequence similarities with the proteins in the fold
library of DescFold (the Blast e-value for any protein pair
between SCOP_1.75_1866 and SCOP_1.73_40% is >
0.1). On the other hand, 1,866 and 1,795 proteins in
SCOP_1.75_1866 have at least one structural homolog in
the fold library of DescFold at the fold and superfamily
levels, respectively. Therefore, SCOP_1.75_1866 should
be regarded as a good benchmarking dataset. More details
about the selection of the SCOP_1.75_1866 dataset are
outlined in the Methods section. We processed these
1,866 sequences via the current DescFold server and
recorded the top hit for each sequence. According to the
SCOP classification scheme, we measured the perform-
ance at the fold and superfamily levels. At the fold level, a
correct prediction for a test protein can be assigned in case
the top hit and the test protein belong to the same SCOP
fold type. Generally, our DescFold is able to do the correct
fold identification for 61.84% (i.e., 1,154/1,866 =
61.84%) test proteins, or some 21% more than a standard
Psi-blast search. At a less than 5% false positive rate con-
trol, our DescFold method is able to correctly recognize
folds for 46.25% proteins, whereas only 30.05% proteins
are successfully identified by the standard Psi-blast search
(Figure 5A). Note that the parameter settings of the stand-
ard Psi-blast search were the same as those used in deriv-
ing the Psi-blast-based descriptor. When assessing the
performance at the superfamily level, a correct prediction
means the top hit and the test protein should from the
same SCOP superfamily. DescFold can correctly recognize
structural homologs at the superfamily level for 57.05%

Performance of fold recognition using different descriptorsFigure 1
Performance of fold recognition using different 
descriptors. True positive instances versus false positive 
instances were used to examine the number of true positives 
out of 1,835 proteins identified by varying similarity scores.

0 100 200 300 400 500 600 700 800 900
0

200

400

600

800

1000

1200

1400

False positive instances

T
ru

e 
po

si
tiv

e 
in

st
an

ce
s

SSEA+Psi-blast+Rps-blast

SSEA+Psi-blast+Rps-blast+motif

SSEA+Psi-blast+Rps-blast+motif+PPA

SSEA+Psi-blast+Rps-blast+motif+PPA+PSPA

Table 3: The ROCn scores and the corresponding sensitivity values of DescFold using different descriptors.a

Descriptors included ROC16,744 (Sn)b, c ROC83,720 (Sn)b, c ROC167,440 (Sn)b, c AUC

SSEA + Psi-blast + Rps-blast 0.0029 (34.70%) 0.0209 (52.76%) 0.0506 (64.56%) 0.8768
SSEA + Psi-blast + Rps-blast + motif 0.0032 (37.73%) 0.0223 (55.25%) 0.0529 (66.49%) 0.8831
SSEA + Psi-blast + Rps-blast + motif + PPA 0.0041 (46.94%) 0.0256 (60.06%) 0.0584 (70.21%) 0.8962
SSEA + Psi-blast + Rps-blast + motif + PPA + PSPA 0.0050 (70.21%) 0.0305 (68.51%) 0.0668 (75.93%) 0.9143

aThese measurements reflect the performance of remote homology identification for all protein pairs within the SCOP_1.73_1835 dataset.
bROC16,744, ROC83,720, and ROC167,440 stand for the ROCn scores at 1%, 5%, and 10% false positive rates, respectively.
cThe value inside the parentheses denotes the corresponding sensitivity.
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(i.e., 1,024/1,795 = 57.05%) test proteins, which outper-
forms Psi-blast by a nearly 17% higher recognition rate. As
further illustrated in the ROC curve (Figure 5B), DescFold
also reveals a much better performance than the standard
Psi-blast search.

Comparison with some well-established fold recognition 
methods
In this work, our DescFold method was first benchmarked
against some state-of-the-art fold recognition methods
based on the LiveBench targets. As a real-time fold recog-
nition benchmark program, every week the LiveBench
server submits newly released PDB proteins to the partici-
pating fold-recognition servers, and evaluates the corre-
sponding results. Here, we have selected the LiveBench-
2008.1 targets (283 proteins) and LiveBench-2008.2 tar-
gets (513 proteins) as two reference test sets to compare
the performance of DescFold and some well-established
fold recognition methods. Although many fold recogni-
tion severs participated in the LiveBench-2008.1 and Live-
bench-2008.2 experiments, we compared our DescFold
method with only five popular fold-recognition methods
among them: 3D-PSSM [11], Fugue [12], mGenThreader
[13], Inub [39] and FFAS [10].

Table 4 summarizes the performance of DescFold on the
LiveBench-2008.1 targets, which is measured by the
number of correct predictions with higher reliability than
the 1-10 false prediction and the total number of correct
predictions (i.e., sensitivity). Generally, the performance
of DescFold is fully comparable to the five other fold rec-
ognition methods. Considering performance within ≤ 10
false positives, DescFold exhibits an overall higher fold
identification rate than 3D-PSSM, a slightly better per-
formance than Fugue and mGenThreader, and a lower
identification rate than FFAS and Inub. Regarding the
total number of correct predictions, DescFold is able to
correctly identify fold types for 134 targets, which is also
competitive to the five well-established methods. As
defined by the developer of LiveBench, the targets can be
divided into three categories: trivial, easy and hard targets.
We separately list the corresponding sensitivity values on
these three types of targets in Table 4. Generally, DescFold
also shows reasonable performance in any category,
although its relative rankings change slightly in three dif-
ferent categories.

The performance of DescFold on the LiveBench-2008.2
targets is also comparable to the five other fold recogni-
tion methods (Table 5). Considering performance within
≤ 10 false positives, FFAS is still the best performing
method among the five other fold recognition methods,
whereas 3D-PSSM is ranked as the worst one again. The
performance of DescFold is between these two, which is
close to the three other methods (Inub, Fugue and mGen-
Threader) (Table 5). In our previous work, the same
benchmark experiment was carried out based on the Live-
Bench-8 targets. Taking Fugue as a reference method, our
original DescFold was benchmarked to have a considera-
bly lower fold identification rate [24]. However, the new
DescFold shows fully competitive performance with

Performance of remote homology identification using differ-ent descriptorsFigure 2
Performance of remote homology identification 
using different descriptors. True positive rates versus 
false positive rates were used to examine the number of true 
positives out of 8,244 protein pairs identified by varying simi-
larity scores.
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Cartoon representation of two remote homologs (SCOP entries: d2a13a1 and d1hmsa_) successfully detected by DescFoldFigure 3
Cartoon representation of two remote homologs 
(SCOP entries: d2a13a1 and d1hmsa_) successfully 
detected by DescFold. The structural alignment between 
d2a13a1 (red) and d1hmsa_ (green) was carried out by using 
CE [51]. The RMSD for 121 structurally aligned residues is 
3.6 Å, and the CE Z-Score is 5.2.
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Fugue in both LiveBench-2008.1 and LiveBench-2008.2
experiments, suggesting that a clear improvement to Desc-
Fold has been made in this work.

The Lindahl dataset [40] was also employed to further
benchmark the performance of our DescFold method.
Based on the SCOP database (version 1.39), the Lindahl
dataset contains 976 proteins, in which the sequence
identity for any protein pair is < 40%. In this dataset, 555,
434 and 321 sequences have at least one matching struc-
tural homolog at the family, superfamily and fold levels,
respectively. Taking the same strategy and procedures as

we used with the SCOP_1.73_1835 dataset to develop the
DescFold method, we retrained the DescFold method
based on the Lindahl dataset. By employing the same
assessment procedure as reported in the literature
[16,25,40], the top 1 and the top 5 matched templates for
each query sequence were used to evaluate the sensitivity
of recognition performance. Since the Lindahl dataset was
based on an old version of SCOP, it may be quite subjec-
tive to benchmark different methods based on this data-
set. Ideally, the sequence and structural information of
these 976 proteins should not be included in deriving the
DescFold prediction models. More stringently, the

Snapshot of the DescFold websiteFigure 4
Snapshot of the DescFold website. (A) The submission page of DescFold. (B) The result page of DescFold.
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sequence and structural homologs of these 976 proteins
should also not be used. In the present study, we used the
SCOP database (version 1.73) to derive the PSPA and
motif-based descriptors. For instance, the PSPA descriptor
used the SCOP_1.73_40% dataset to construct the struc-
ture-seeded profile, which may inevitably contain struc-
tural homologs of these 976 proteins. Meanwhile, the
motif-based descriptor relied on the SCOP_1.73_95%
dataset to derive the motif-fold compatibility, which may
also utilize some sequence homologs of these 976 pro-
teins. To allow for a fair comparison, we designed two
DescFold predictors. In the first predictor (DescFold_I),
both the PSPA and motif-based descriptors were skipped.
In the second predictor (DescFold_II), the PSPA descrip-
tor was still not considered, while the motif-based
descriptor was kept. To derive the motif-based descriptor,
however, these 976 proteins' sequence homologs in the
SCOP_1.73_95% database were filtered by a Blast e-value
threshold of 0.01.

We compared the performance of our DescFold with eight
other fold recognition methods, including the standard
Psi-blast search, HHpred [41], FOLDpro [25], Sparks [42],
SP3 [43], SP4 [44], SP5 [16] and Fugue [12]. The corre-
sponding results for these eight methods were cited from
Refs. [16]and [25]. Table 6 shows the sensitivities of Desc-
Fold and the other well-established methods at the family,
superfamily and fold levels, for the top 1 and top 5
matched templates, respectively. Although the PSPA was
not considered, the performance of DescFold (i.e.,
DescFold_II) is fully comparable with the other methods.
For prediction at the family level, the performance of
DescFold is very close to that of well-established methods.
For prediction at the superfamily level, DescFold is the
best-performing method. Regarding the top 1 prediction
at the fold level, DescFold surpasses all the tested methods
except SP5. It is also worth mentioning that our DescFold
(i.e., DescFold_I) is still competitive even when both the
PSPA and motif-based descriptors are discarded.

Although many efforts were taken to make sure that the
above two benchmark experiments were intensive and
strict, we are still not able to guarantee a fully unbiased
assessment. Regarding the benchmark based on the Live-
Bench targets, the fold libraries are different for the
assessed methods, which may have some effect on the per-
formance of the corresponding methods. For the compar-
ative analysis based on the Lindahl dataset, the
performance of other methods was originally collected
from different literature. In this case, the sequence data-
bases used to generate the profiles are not the same, which
may result in different performance to some extent. Mean-
while, some methods may already have been significantly
updated since their benchmark performance on the Lin-
dahl dataset was published. As pointed out by Cheng and
Baldi [25], such benchmark experiments can only provide
a rough assessment rather than a very precise measure-
ment. Even so, both of the aforementioned two bench-
mark experiments conclude that the performance of
DescFold is fully comparable to some well-established
peer methods.

Conclusions
In this work, we developed an improved DescFold
method by combining two new profile-profile alignment
related descriptors (i.e., the PPA and PSPA descriptors).
Due to the fact that the profile-profile alignment is able to
capture more evolutionary information which was missed
in our original DescFold, the new DescFold leads to a
much better performance. The new DescFold method was
benchmarked against some other state-of-the-art fold rec-
ognition techniques by using the LiveBench targets and
Lindahl dataset. Our DescFold method demonstrates
competitive performance in comparison to the existing
methods. To allow for practical applications, we have

Performance of DescFold based on the SCOP_1.75_1866 test setFigure 5
Performance of DescFold based on the 
SCOP_1.75_1866 test set. The performance was meas-
ured at the fold (A) and superfamily (B) levels, respectively.
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made it freely accessible to the community through a user-
friendly web-server.

Concerning future development, the following two efforts
should be taken to maintain DescFold as a competitive
fold recognition system. Firstly, the fold library of Desc-
Fold should be regularly updated. To provide a more com-
prehensive fold library, those experimentally determined
structures which are not included in the SCOP database
should also be taken into account. Secondly, seeking new
descriptors is still the most important direction for devel-
opment of a better predictor. On the one hand, machine
learning based-methods allow the incorporation of more
descriptors into a fold recognition system, which may
yield better performance. On the other hand, the intro-
duced descriptors will inevitably increase the complexity
of the prediction model and obscure the contribution of

each individual descriptor. Therefore, a new descriptor
candidate should be carefully assessed before its accept-
ance for inclusion in the future versions of DescFold.
Thus, we expect such machine learning-based methods
will not only result in a fold recognition system with
higher accuracy, but also strengthen our fundamental
understanding of the evolutionary relationship between
protein sequence and structure.

Methods
Datasets
In this work, we heavily rely on the SCOP database (ver-
sion 1.73) [45] to construct the DescFold method. The
corresponding SCOP sequences and structural data were
obtained from the ASTRAL website http://astral.berke
ley.edu/. To train and test the DescFold prediction mod-
els, two SCOP protein sequence subsets filtered by a 10%

Table 4: Comparison of receiver operator characteristics (< = 10 false positives) and sensitivity for different fold recognition methods 
based on all LiveBench-2008.1 targets.a

Receiver operator characteristics (< = 10 false positives)b Sensitivityc

1 2 3 4 5 6 7 8 9 10 All Trivial Easy Hard

FFASd 85 94 119 133 135 139 140 140 140 140 150 8 103 39
Inubd 73 89 106 116 120 121 121 121 121 121 134 6 91 37
Fugued 61 79 81 85 87 96 101 102 104 104 135 8 95 32
mGenThreaderd 77 89 89 90 90 93 97 97 98 98 143 8 97 38
3D-PSSMd 48 55 72 75 78 80 86 86 87 89 102 5 75 22
DescFolde 87 89 99 103 104 108 111 114 115 116 134 8 92 34

a LiveBench-2008.1 contains 283 targets, which can be divided into 9 trivial, 109 easy and 165 hard targets. As defined by the developer of 
LiveBench, trivial targets means those proteins sharing strong sequence similarity to the other previously known structures, as measured by Blast 
using an e-value < 0.001. The division of easy and hard targets is based on whether a structural template can be identified by Psi-blast with an e-
value < 0.001.
b1-10: number of correct predictions with higher reliability than the 1-10 false prediction.
c Number of correct predictions for all, trivial, easy and hard targets, respectively.
dThe results for FFAS, Inub, Fugue, mGenThreader, and 3D-PSSM were cited from http://meta.bioinfo.pl/results.pl?comp_name=livebench-2008.1
eThe performance was evaluated based on the number of correctly assigned folds. We considered two hits as similar, provided that the Z-Score 
obtained by applying the CE structural alignment algorithm [51] was > = 4.0.

Table 5: Comparison of receiver operator characteristics (< = 10 false positives) for different fold recognition methods based on all 
LiveBench-2008.2 targets.a

Receiver operator characteristics (< = 10 false positives)b Sensitivityc

1 2 3 4 5 6 7 8 9 10 All Trivial Easy Hard

FFASd 121 174 205 218 228 263 267 269 278 278 302 15 218 69
Inubd 29 34 126 149 183 195 209 210 211 228 257 14 189 54
Fugued 129 186 199 219 221 223 224 225 225 225 285 16 213 56
mGenThreaderd 179 197 205 211 215 215 216 222 232 232 290 16 215 59
3D-PSSMd 25 75 83 97 127 140 175 176 178 179 220 12 181 27
DescFolde 158 190 190 211 215 212 215 220 224 224 294 15 210 69

a LiveBench-2008.2 has a total number of 513 targets, including 16 trivial, 246 easy and 256 hard targets. Please refer to the footnote of Table 4 for 
the definitions of trivial, easy and hard targets.
b1-10: number of correct predictions with higher reliability than the 1-10 false prediction.
c Number of correct predictions for all, trivial, easy and hard targets, respectively.
d The results for FFAS, Inub, Fugue, mGenThreader, and 3D-PSSM were cited from http://meta.bioinfo.pl/results.pl?comp_name=livebench-2008.2
eThe performance was evaluated based on the number of correctly assigned folds. We considered two hits as similar, provided that the Z-Score 
obtained by applying the CE structural alignment algorithm [51] was > = 4.0.
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cut-off for sequence identity and an e-value threshold of
0.01 were downloaded from the ASTRAL website sepa-
rately. Then, only sequences occurred in both of the above
subsets were further kept. We also excluded sequences
that are too short (less than 60 amino acids). Moreover,
only a representative protein was reserved for each SCOP
family. Finally, 1,835 protein sequences were kept and
compiled into a dataset, which we named
SCOP_1.73_1835 [see Additional file 1]. To construct the
fold library of the DescFold web server, the
SCOP_1.73_40% database with a total of 9,282 proteins
was downloaded, in which the sequence identity among
the proteins is equal to or less than 40%. The
SCOP_1.73_40% database was also used as the database
to search for structural neighbors for each template. Addi-
tionally, we also used the SCOP_1.73_95% dataset to
derive the motif-based descriptor, in which the sequence
identity for any sequence pair is ≤ 95%. A total of 15,273
protein sequences in the current SCOP_1.73_95% dataset
were downloaded.

To perform a large-scale benchmarking on our DescFold
server, a stringent test set was selected from a newer SCOP
version (i.e., SCOP 1.75) based on the following criteria.
Firstly, all proteins existed in SCOP 1.75 but not in SCOP
1.73 were downloaded. Secondly, only proteins sharing
the fold types already existed in SCOP 1.73 were retained.
Thirdly, proteins sharing a Blast e-value less than 0.1 with
any protein in the SCOP_1.73_40% library were further
discarded. Finally, 1,866 proteins from the SCOP 1.75
version were compiled into a test dataset called
SCOP_1.75_1866 [see Additional file 2].

The NCBI non-redundant (NR) sequence database was
downloaded from ftp://ncbi.nlm.nih.gov/blast/ (Novem-
ber, 2008). The NR database was further clustered at a cut-
off of 90% identity (global alignment mode) by using
CD-hit [46] and the resulting NR90 database, containing
4,205,215 sequences, was used to perform the Psi-blast
search. To derive the motif-based descriptor, the PROSITE
database (release 20.9) [31], which contains 1,322 pat-
terns and 720 profiles, was obtained from http://
www.expasy.org/prosite/.

Descriptors
Psi-blast-based descriptor
The Psi-blast-based descriptor for a sequence pair A and B
was obtained through the following steps. First, sequence
A was searched against the NR90 database by Psi-blast for
three iterations to generate a profile (i.e., profile A). The e-
value cut-off for recruiting sequences in the profile was set
as 0.001. Second, a Psi-blast search was performed on pro-
file A against sequence B for another round. The above
Psi-blast search resulted in two parameters, the expected
value evaluePsi-blast(A, B) and the bit score ScorePsi-blast(A, B).
In this work, evaluePsi-blast(A, B) was further modified
according to the following equation.

Thus, the Psi-blast-based descriptor (i.e., evalue_modPsi-

blast(A, B) and Score Psi-blast(A, B)), can be used to measure
the sequence similarity between A and B.

evalue mod A B log evalue A BPsi blast Psi blast_ ( , ) ( ( , ))− −= −
(1)

Table 6: The sensitivity of different methods on the Lindahl dataset at the family, superfamily, and fold levels.a, b

Method Family level (%) Superfamily level (%) Fold level (%)

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

Psi-blastc 71.2 72.3 27.4 27.9 4.0 4.7
Fuguec 82.2 85.8 41.9 53.2 12.5 26.8
FOLDproc 85.0 89.9 55.0 70.0 26.5 48.3
HHpredd 82.9 87.1 58.0 70.0 25.2 39.4
Sparksd 81.6 88.1 52.5 69.1 24.3 47.7
SP3d 81.6 86.8 55.3 67.7 28.7 47.4
SP4d 80.9 86.3 57.8 68.9 30.8 53.6
SP5d 82.4 87.6 59.8 70.0 37.9 58.7
DescFold_Ie 80.7 88.5 57.8 69.1 24.9 55.8
DescFold_IIf 81.1 88.5 60.6 72.4 32.4 59.8

a The sensitivity is defined by the percentage of query proteins having at least one correct hit ranked first, or within the top 5.
bValues in bold are the best results.
cThe results were cited from Ref. [25].
d The results were cited from Ref. [16].
e DescFold_I was based on the SSEA-, Psi-blast-, Rps-blast-, and PPA-based descriptors.
f DescFold_II was based on the SSEA-, Psi-blast-, Rps-blast-, motif-, and PPA-based descriptors.
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Rps-blast-based descriptor
The Psi-blast search can be conducted in a reverse way via
Rps-blast (i.e., profile B against sequence A). As we
derived the Psi-blast-based descriptor, the Rps-blast-based
descriptor also results in two parameters evalue_modRps-

blast(A, B) and ScoreRps-blast(A, B).

SSEA-based descriptor
To derive the SSEA-based descriptor for two query
sequences A and B, the following three steps were
involved. First, the secondary structures of the two query
sequences were predicted by PSIPRED [47]. Second, the
predicted secondary structural string for each sequence
was converted into secondary structure elements such that
"H" represents a helix element, "E" denotes a strand ele-
ment, and "C" stands for a coil element. Third, the two
secondary structure elements were aligned using a
dynamic programming algorithm [5] with a scoring
scheme proposed by Przytycka et al. [48]. The resulting
alignment score SSEA(A, B), ranging from 0 to 1, was
regarded as the SSEA-based descriptor. For more details
about the SSEA-based descriptor, please refer to our previ-
ous work [24].

Motif-based descriptor
In this work, the PROSITE motif library was used to derive
the motif-based descriptor. First, the motif-fold correla-
tion [49] in the SCOP database (i.e., SCOP_1.73_95%)
can be quantified by a log-odds score S defined as:

where p(motif) and p(fold) are the individual probabilities
of finding a particular sequence motif and a particular
fold in the SCOP database, and p(fold, motif) is the corre-
sponding joint probability. Furthermore, the motif-based
compatibility between a query sequence and given folds
can be expressed as:

where S(fold|motif) was calculated from equation 2 and
the summation was performed over all motifs found in
the query sequence and fulfilling the following criteria:

where C is an adjustable parameter, with 0.1 being an
optimized value in this work. For a query sequence, the
potential fold (PF) should be identified as the fold where
Smotif(fold | sequence) achieves a maximum. Then, the
motif-based descriptor between two sequences A and B is
defined as:

Profile-profile-alignment-based (PPA) descriptor
The COMPASS algorithm [23,32] was employed to derive
a profile-profile-alignment-based descriptor between pro-
teins A and B. First, a Psi-blast search was carried out to
generate sequence profiles A and B, with the same param-
eter settings as we used to calculate the Psi-blast-based
descriptor. Second, the two multiple alignments gener-
ated from the Psi-blast search (i.e., profiles A and B) were
processed by COMPASS to obtain a profile-profile align-
ment. The resulting two parameters, evaluePPA(A, B) and
ScorePPA(A, B) were regarded as the similarity measure-
ment between A and B (i.e., the PPA descriptor). Similar
to Eq.(1), the evaluePPA(A, B) was further converted into
evalue_modPPA(A, B).

Profile-structural-profile-alignment-based (PSPA) descriptor
Considering a protein pair A and B in the context of fold
recognition, protein A is regarded as the query sequence
and protein B is a structural template. Thus, the profile for
protein B can also be obtained by searching its structural
neighbours. To derive a PSPA descriptor between A and B,
sequence profile A and structure-seeded profile B were
generated. Sequence profile A was generated as described
in deriving the Psi-blast-based descriptor, while the struc-
ture-seeded profile was obtained through the following
steps. First, we searched structural template B against the
SCOP_1.73_40% structural database using the TM-align
structural alignment method [33] with default parame-
ters. The search resulted in 9282 pair-wise structural align-
ments. Second, only those structural hits with a TM-align
score > 0.6 were kept. Generally, a structural hit with a
TM-align score > 0.6 is considered significant, meaning
protein B and the corresponding hit share significant
structural similarity. Moreover, we took sequence B as the
reference sequence and no gaps were allowed, while we
trimmed the structural hits' residues if they were aligned
with the gap regions of sequence B in the corresponding
pair-wise alignment. Finally, the corresponding pair-wise
sequence alignments were combined into a multiple
sequence alignment (i.e., structure-seeded profile B).
When sequence profile A and structure-seeded profile B
were prepared, the COMPASS algorithm was used again to
derive the PSPA descriptor (evalue_modPSPA(A, B) and
ScorePSPA(A, B)).

Construction of DescFold
SVM learning
Based on the same strategy as detailed in our previous
work, the aforementioned descriptors were combined
into a fold recognition system termed DescFold with the

S fold motif log
p fold motif

p fold p motif
|

( , )
( ) ( )

( ) =
×

(2)

S fold sequence S fold motifmotif

motif

| |( ) = ( )∑ (3)

S fold motif C|( ) > (4)

Motif Score A B
S PF A S PF B PF PF

Otherwis
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0 ee
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assistance of SVMs. Similar to a 5-fold cross-validation,
the protein pairs in the SCOP_1.73_1835 dataset (i.e.,
1835 × 1834/2 = 1,682,695 pairs) were divided into five
subsets of nearly equal size. Here, the SVM was trained to
distinguish two different types of protein pairs (i.e., struc-
turally similar and structurally dissimilar pairs). For the
first type of protein pairs (i.e., positive instances), both
proteins belong to the same superfamily. For the second
type of protein pairs (i.e., negative instances), the two pro-
teins are from different superfamilies. Of the total
1,682,695 protein pairs, 8,244 pairs were considered pos-
itive instances and their labels were set to + 1,
while1,674,451 pairs were considered negative instances
and their labels were set to -1. The aforementioned six
descriptors were input as the feature vector for each pro-
tein pair, which contains a total of ten parameters. Taking
a protein pair A and B as an example, the corresponding
ten parameters are evalue_modPsi-blast(A, B), ScorePsi-blast(A,
B), evalue_modRps-blast(A, B), ScoreRps-blast(A, B), SSEA(A, B),
Motif_Score(A, B), evalue_modPPA(A, B), ScorePPA(A, B),
evalue_modPSPA(A, B), and ScorePSPA(A, B).

To predict whether a given protein pair were structurally
similar or dissimilar, the subset to which this pair belongs
was labeled the "test" set, whereas the four remaining sub-
sets were labeled "training" sets. SVM models were devel-
oped for each of the "training" sets. The ratio of the
positive to negative instances in each training dataset is
approximately 1:200. An unbalanced training dataset will
affect the prediction performance of the established SVM
models and we found that the optimal ratio in the train-
ing set was 1:2.5. Each training dataset was adjusted by
discarding a random selection of the negative pairs prior
to training. The whole training resulted in four separate
SVM models, the prediction score being obtained as an
average value over the decision values from the four differ-
ent SVM models. Furthermore, the raw prediction score
(RPS) was further converted into a Z-Score. We randomly
selected 3000 pairs from the 1,682,695 protein pairs, and
calculated the average value (AVE) and standard deviation
(SD) of these pairs' prediction scores. For a query
sequence, a Z-Score can then be calculated: Z = (RPS -
AVE)/SD.

Libsvm [50] was employed as the SVM algorithm in our
work. The applied kernel was the linear function and the
other parameters were set to their default values. We also
tried the automatic parameter optimization provided by
Libsvm, but it did not result in a better performance.
Instead of performing any further parameter optimiza-
tion, we only used the default SVM parameters in our
DescFold method. According to the randomized grouping
of five subsets, the 5-fold cross-validation was repeated 5
times. Finally, the average performance was reported.

Of the ten input features (parameters) used in building
the SVM models, it is interesting to quantify the relative
importance of each feature in classifying structurally sim-
ilar and dissimilar protein pairs. The feature selection tool
fselect.py http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
#6 provided by the Libsvm developer was employed to
measure the relative importance of each feature. For each
feature, an F-score can be calculated from fselect.py. Gen-
erally, the larger the F-score is, the more important this
feature is. As shown in Table 7, ScorePSPA(A, B) tends to be
the most important, while Motif_Score(A, B) is ranked as
the weakest feature.

Construction of the web server of DescFold
To aid the research community, a web server for DescFold
was constructed and is freely available at http://
202.112.170.199/DescFold/index.html. To sufficiently
represent the known protein structural space, the 9,282
proteins in the SCOP_1.73_40% dataset were used as the
fold library. For computational efficiency, the Psi-blast-
derived profiles, predicted secondary structure elements,
Smotif(fold|sequence), and structure-seeded profiles of the
template proteins were pre-calculated. To search a query
sequence against the fold library (i.e., SCOP_1.73_40%),
a total of 9,282 protein pairs were involved. For each pro-
tein pair, the corresponding six descriptors were calcu-
lated. Then, the resulting ten parameters were used as the
input for five SVM models trained in the above section,
and the prediction score was obtained as an average value
over the decision scores from the five different SVM mod-
els. Moreover, the prediction scores for all protein pairs
were converted into Z-Scores. Finally, the top hits ranked
by Z-Scores were reported. Users have options to display
the top hits by setting the number of hits and the cut-off
of Z-Score. The default number is ten and the maximal
number is 50.

Availability and requirements
Project Name: DescFold

Table 7: The F-scores of ten input features used in building the 
SVM models.

Feature F-Score

ScorePSPA(A, B) 0.421
SSEA(A, B) 0.368
ScorePPA(A, B) 0.279
evalue_modPSPA(A, B) 0.217
evalue_modPPA(A, B) 0.162
ScorePsi-blast(A, B) 0.135
ScoreRps-blast(A, B) 0.119
evalue_modPsi-blast(A, B) 0.081
evalue_modRps-blast(A, B) 0.062
Motif_Score(A, B) 0.026
Page 12 of 14
(page number not for citation purposes)

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#6
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#6
http://202.112.170.199/DescFold/index.html
http://202.112.170.199/DescFold/index.html


BMC Bioinformatics 2009, 10:416 http://www.biomedcentral.com/1471-2105/10/416
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