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With the advance of modern molecular biology it has
become increasingly clear that few cellular processes are
unaffected by protein phosphorylation. Therefore, com-
putational identification of phosphorylation sites is very
helpful to accelerate the functional understanding of huge
available protein sequences obtained from genomic and
proteomic studies. Using a genetic algorithm integrated
neural network (GANN), a new bioinformatics method
named GANNPhos has been developed to predict
phosphorylation sites in proteins. Aided by a genetic
algorithm to optimize the weight values within the
network, GANNPhos has demonstrated a high accuracy
of 81.1, 76.7 and 73.3% in predicting phosphorylated
S, T and Y sites, respectively. When benchmarked
against Back-Propagation neural network and Support
Vector Machine algorithms, GANNPhos gives better
performance, suggesting the GANN program can be used
for other prediction tasks in the field of protein
bioinformatics.
Keywords: genetic algorithm/neural network/
phosphorylation site/prediction/protein bioinformatics

Introduction

As a ubiquitous mechanism for cellular regulation, protein
post-translational phosphorylation plays a crucial role in a
variety of biological processes such as signal transduction,
transcription, translation, transport, cytoskeletal regulation
and metabolism (Kobe et al., 2005; Groban et al., 2006).
Serine (S), threonine (T) and tyrosine (Y) are the most fre-
quently observed amino acids of phosphorylation in eukar-
yotes. As a very large family of enzymes, protein kinases
catalyze phosphorylation, and many kinases themselves are
regulated by phosphorylation, resulting in complicated sig-
naling and regulatory networks (Groban et al., 2006).
Defects in protein kinase function cause a variety of diseases
and kinases are major targets for drug design aimed at treat-
ing cancer, diabetes, etc. (Kobe et al., 2005). More than 30%
of proteins in the eukaryotic cell were estimated to be phos-
phorylated (Hubbard and Cohen, 1993). It was also estimated
that the majority of human proteins might be phosphorylated
at multiple sites (totally .100 000 sites) (Zhang et al., 2002;
Blom et al., 2004). Therefore, faster and more efficient
screening tools for detecting phosphorylation sites in protein

sequences are highly needed.
Classical experimental approaches such as radioactive label-

ing are commonly used in detecting phosphorylated proteins,
and usually they are labor-intensive (Hjerrild and Gammeltoft,
2006). Recently, refinements of several affinity-based strategies
such as immunoaffinity, immobilized metal affinity chromato-
graphy (IMAC) and strong cation exchange (SCX) chromato-
graphy, coupled with the tandem mass spectrometry have
dramatically speeded up the identification of phosphorylation
sites (Schwartz and Gygi, 2005). So far, several thousand sites
of post-translational phosphorylation are known and have been
compiled into some searchable phosphorylation site datasets
such as Phospho.ELM (http://phospho.elm.eu.org) (Diella
et al., 2004). Although the number of experimentally charac-
terized protein kinases and their phosphorylation sites will
continue to grow quickly, there is still a serious need for
bioinformatics methods to predict possible phosphorylation
sites in proteins, which may be helpful to accelerate the func-
tional understanding of massively available protein sequences
obtained from genomic and proteomic studies.

Two classes of prediction tasks have been designed to
address the computational identification of potential phos-
phorylation sites in proteins of interest. In the first category,
prediction is only focused on forecasting whether a query S,
T or Y residue is a phosphorylation site or not. Two com-
monly used methods are NetPhos (Blom et al., 1999) and
DISPHOS (Iakoucheva et al., 2004). In the second category,
prediction is switched to the identification of protein kinase-
specific phosphorylation sites, such as NetPhosK (Blom
et al., 2004; Hjerrild et al., 2004), PSSP (Xue et al., 2006),
PredPhospho (Kim et al., 2004) and KinasePhos (Huang
et al., 2005a, 2005b), etc. By considering kinase classification
in predicting phosphorylation sites, the predictive accuracy is
increased and the corresponding kinase information of every
possible phosphorylation site can be obtained (Kim et al.,
2004; Huang et al., 2005a, 2005b). Due to the nature of stati-
stical learning-based algorithms, this type of prediction may
only be suitable for those kinase families in which the
number of known phosphorylation sites is large enough.
Therefore, these kinase-specific prediction systems are inevi-
tably limited to only a few kinase families (Kim et al., 2004).

To construct a statistical learning-based prediction algor-
ithm, generally the input for a phosphorylation site predictor
is presented by a 2n þ 1 residue long sequence with S, T or
Y in the central position (i.e. the window size is equal to
2n þ 1) (Iakoucheva et al., 2004; Xue et al., 2006). The
feature construction for a potential site (i.e. a sequence frag-
ment of 2n þ 1 residues) is further required for the proces-
sing of a prediction algorithm. The common position-specific
features have been constructed using the standard orthogonal
representation (Blom et al., 1999), which was previously
used in predicting protein secondary structure (Qian and
Sejnowski, 1988). It has also been well accepted that the
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phosphorylation sites are preferred to be positioned on the
surface of proteins, generally in disordered regions that are
flexible enough to be accessed by the catalytic residues in
the protein kinase (Kobe et al., 2005). Fragments with rigid
helical structure or buried in the hydrophobic core of the
protein have low probability to contain phosphorylation sites
(Kobe et al., 2005). Since some structural information can be
derived from sequence data, the incorporation of predicted
structural information [e.g. predicted secondary structure
(Rost and Sander, 1993; Jones, 1999) and protein disorder
information (Ward et al., 2004; Han et al., 2006; Radivojac
et al., 2007)] can reasonably improve the prediction accuracy
(Iakoucheva et al., 2004).

The performance of a predictor is also strongly related to
the adopted prediction algorithm. Artificial neural networks
(ANN) (Blom et al., 1999; Berry et al., 2004; Hjerrild et al.,
2004) and support vector machines (SVM) (Kim et al., 2004;
Plewczynski et al., 2005a, 2005b) have been frequently used
in the prediction of phosphorylation sites. Some other algor-
ithms were also employed. For example, DISPHOS relied on
a logistic regression-based linear predictor (Iakoucheva
et al., 2004). Huang et al. (2005b) used a profile hidden
Markov model in their KinasePhos predictor. Very recently,
a PPSP predictor was constructed to predict PK-specific
phosphorylation sites with Bayesian decision theory (Xue
et al., 2006). In addition to the above statistical learning-
based algorithms, the consensus sequences (motifs) have also
been used to search the phosphorylation sites in proteins of
interest such as Scansite (Obenauer et al., 2003).

Although a series of phosphorylation site predictors
are publicly available, there is still a room to improve
the predictive accuracy. With the recent increase in protein
phosphorylation sites identified by mass spectrometry, a
unique opportunity has arisen to develop new statistical
learning-based algorithms for the prediction of phosphoryl-
ation sites. Although the ANN trained with the standard
back-propagation algorithm (i.e. BPNN) has been well
implemented in phosphorylation site prediction (Blom et al.,
1999; Hjerrild et al., 2004), the BPNN has its limitations
such as its inability to escape local optima (Sexton and
Dorsey, 2000). To overcome the weakness of BPNN, genetic
algorithm (GA) has been well employed for optimizing the
connection weights within ANNs to achieve a better per-
formance (Salomon, 1998; Sexton et al., 1999; Sexton and
Dorsey, 2000). To our best knowledge, such GA-integrated
neural network (GANN) has not been used in predicting the
phosphorylation sites of proteins yet.

This study is focused on developing a new phosphoryl-
ation site prediction system GANNPhos by using a GANN.
The overall performance of this newly developed
GANNPhos is characterized and compared with the BPNN-
and SVM-based algorithms. GANNPhos is also bench-
marked against one existing phosphorylation site predictor
(i.e. DISPHOS) and its future development is discussed in
the final part of this paper.

Methods

Datasets
Phosphorylation sites were obtained form Phospho.ELM
database (Version 5.0) (http://phospho.elm.eu.org/), which
contains 2540 substrate proteins from different species

covering 4799 S, 974 T and 1433 Y sites. Since these
residues are experimentally verified phosphorylation sites,
they are regarded as the positive sites (PS, PT and PY) and
they are compiled into the positive datasets (DB_PS, DB_PT

and DB_PY). Each site within the dataset is represented by a
sequence fragment of 25 amino acids, where the S, T or Y is
in the central position. To remove redundant fragments
within the datasets, the initial datasets were filtered using a
30% sequence identity. Since each site is represented by a
sequence fragment with fixed length, the sequence identity is
based merely on the matching between two fragments (i.e.
no-gap alignment). As the middle residue in each site is
always the same (S, T or Y), the sequence identity is defined
as the percentage of identically matched residues out of 24
positions (i.e. the central position is not included). Thus, for
any pair of fragments within one dataset, a 30% sequence
identity cut-off means only seven residues are maximally
allowed to be identically matched in the generated no-gap
alignment. The numbers of PS, PT and PY were then reduced
to 2546, 643 and 944, respectively (Table I), and the detailed
data (Positive_S.txt, Positive_T.txt and Positive_Y.txt) is
available in the supplemental material.

Similar to the methods used in the literature (Blom et al.,
1999; Iakoucheva et al., 2004), the negative sites (i.e. non-
phosphorylation sites, NS, NT and NY) were obtained from
these 2540 protein sequences and represented all S, T and Y
residues that were not reported as being phosphorylated in
Phospho.ELM. Since the number of the available negative
sites is much larger than the phosphorylation sites, the nega-
tive sites were not exhaustively extracted. In the present
study, 94 172 Ns, 57 867 NT and 26 915 NY were initially
selected. The 30% cut-off for sequence identity was also
used to remove the redundancy within the negative datasets
(i.e. DB_NS, DB_NT and DB_NY). Furthermore, the negative
sites with .30% identity with any of the positive sites were
also discarded. Thus, the final negative sites contained
22 597 Ns, 22 292 NT and 13 505 NY (Table I), and the
detailed data (Negative_S.txt, Negative_T.txt and
Negative_Y.txt) is also available in the supplemental
material.

To benchmark the proposed method against DISPHOS1.3,
the datasets used in DISPHOS1.3 were also used to train and

Table I. Phosphorylation and non-phoshorylation sites used in the current

study

Datasetsa Positive sites Negative sites

No. of
initial
sites

No.
of
final
sites

No.
of
final
sites

No.
of
final
sites

I S 4799 2546 94172 22597
T 974 643 57867 22292
Y 1433 944 26915 13505

II S NAb 1079 NA 30310
T NA 270 NA 35085
Y NA 375 NA 15514

aThe dataset I was based on the Phospho.ELM database (Version 5.0). The
dataset II was initially used in training DISPHOS1.3.
bThe corresponding data was not available.
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test the proposed methods. In their datasets, the sizes for PS,
PT and PY were 1079, 270 and 375, while the numbers of
NS, NT and NY were 30 310, 35 085 and 15 514, respectively
(Table I). The selection of these datasets were initially
described in the original paper of DISPHOS (Iakoucheva
et al., 2004), and more detailed information is available at
http://www.ist.temple.edu/DISPHOS.

Feature construction
A new feature construction was developed in this study. The
detailed procedures were exemplified in encoding the phos-
phorylated S residues. Since a sequence fragment of
25 amino acids was deployed to define a candidate phos-
phorylation site, the whole DB_PS dataset can be presented
as a profile with a sequence length of 25. Firstly, the
position-specific amino acid composition within this profile
was calculated. For instance, the amino acid composition for
the j-th position could be denoted as the following vector.

ðaP;1;j; aP;2;j; . . . ; aP;20;jÞT ð1Þ

As usual, the 20 amino acids are ordered alphabetically
according to their single-letter codes. For example, aP,1,j rep-
resents the composition of alanine (A) in the j-th position,
and so forth. The position j can be ranged from 1 to 24. The
1–12 and 13–24 stands for 12 upstream and 12 downstream
positions surrounding the candidate phosphorylation site,
respectively. Since the residue in the center position is
always S, the corresponding amino acid composition was not
considered. Concerning the DB_NS dataset, in the second
step 10 subsets were randomly constructed and the size of
each subset was controlled to be equal to the DB_PS dataset.
Then, the average amino acid composition and the standard
deviation in each position were also calculated. They were
expressed as:

ð�aN;1;j; �aN;2;j; . . . ; �aN;20;jÞT; j ¼ 1; 2; . . . ; 24 ð2Þ

and

ðsN;1;j;sN;2;j; . . . ;sN;20;jÞT; j ¼ 1; 2; . . . ; 24 ð3Þ

In the third step, a parameter zi,j was established to indicate
the propensity of the i-th amino acid appearing at the j-th
position in the phosphorylated S sites.

zi;j ¼
ðaP;i;j � �aN;i;jÞ

sN;i;j
ð4Þ

If zi,j is .0.0, the i-th amino acid in the j-th position is
enriched around phosphorylation sites, higher value of zi,j

corresponding to more significant enrichment. In contrast, if
zi,j is ,0.0, the i-th amino acid in the j-th position is
depleted. In case sN,i,j ¼ 0.0, zi,j was set as 0.0. Because of
the limited number of the sites in the current datasets, this
situation (i.e.sN,i,j ¼ 0.0) may occur in few cases. When the
calculation was performed on each position, the following

matrix Z20�24 was obtained.

Z ¼

z1;1 z1;2 z1;3 � � � z1;24

z2;1 z2;2 z2;3 � � � z2;24

z3;1 z3;2 z3;3 � � � z3;24

..

. ..
. ..

. . .
. ..

.

z20;1 z20;2 z20;3 . . . z20;24

0
BBBBB@

1
CCCCCA

20�24

ð5Þ

To encode one potential site (i.e. a fragment of 25 amino
acids), a 24-dimensional feature vector (X) was constructed
by looking up the corresponding parameters from the above
matrix, which was further explained in the following
example.

Given that a phosphorylated S residue was presented by
the following 25 residue long fragment:

G E S � � � V
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{12 Downstream

S P � � � P P D
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{12 Upstream

ð6Þ

Then, the corresponding feature vector (X) was derived as
below:

X ¼ ðx1; x2; . . . ; x24Þ ¼ ð z6;1; z4;2; z16;3; . . . ; z18;12

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{12 Downstream

;

� z13;13; . . . ; z13;22; z13;23; z3;24Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{12 Upstream

ð7Þ

In the above equation, x1 is encoded by glycine (G) in the
first position of 12 downstream residues. Since G is alphabe-
tically ranked as the sixth position among the 20 amino
acids, the corresponding value of x1 is z6,1. Analogous to x1,
the values of x2, x3, . . ., x24 can also be obtained as described
in Eq. (7). Since the matrix Z reflects the position-specific
amino acid propensity surrounding the phosphorylation sites,
this encoding system is called PSAAP feature. The same
feature construction procedures were used in encoding the
phosphorylated T and Y sites.

Genetic algorithm-integrated neural network
The proposed GANN uses GA to optimize the connection
weights of the ANN over the training dataset. With a basic
architecture similar to the BPNN, the current GANN con-
tains one input layer, one hidden layer and one output layer
(Fig. 1a). The number of input nodes is equal to the dimen-
sionality of the PSAAP feature vector, which is 24 in the
present study. According to our preliminary optimization, the
number of hidden nodes is set as 15 in this work. Only one
output node (y) is needed, and the corresponding value is ‘1’
or ‘0’, representing a phosphorylation site or a non-
phosphorylation site. wij denotes the weight from an input
node to a hidden node and wjk the weight from a hidden
node to the only output node. The neural network uses a
sigmoid function to provide a continuous activation function.

The basic idea of GA is that a population of potential solu-
tions (individuals) is refined iteratively to get the ‘fittest’
individual. The individuals in a population are also called
‘chromosomes’, consisting of ‘genes’ that represent the pro-
perties of the individual. The function to optimize is called a
‘fitness’ function. Each iteration is frequently called a
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Fig. 1. The genetic algorithm-integrated neural network (GANN) used in developing GANNPhos predictor. (a) The architecture of GANN. (b) The training
procedures of GANN.
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‘generation’. In the current study, the chromosome consists
of a combination of ‘0’ and ‘1’ characters (bits) (Fig. 1a).
Sixteen characters (i.e. 16 ‘genes’) represent one weight
value and one chromosome encodes all the connection
weights (i.e. weight matrixes) of an ANN model.

To optimize the connection weights, an initial population of
M chromosomes is randomly generated in the first generation
(Fig. 1b). Genetic process is then applied to the initial
chromosomes, which can be divided into four steps. In the
first step, M ANN models are created according to chromo-
somes of the current generation. In the second step, the fitness
value of each chromosome is computed to evaluate the corre-
sponding ANN model. The Matthews correlation coefficient
(MCC) (Matthews, 1975) is defined as the fitness function f.

f ¼ MCC

¼ ðTP� TNÞ � ðFN� FPÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞ � ðTNþ FPÞ � ðTPþ FPÞ � ðTNþ FNÞ

p
ð8Þ

Where TP, FP, FN and TN denote true positives, false posi-
tives, false negatives and true negatives. In the third step,
three operators (SELECTION, CROSSOVER and
MUTATION) are applied to the chromosomes of the current
generation to obtain the new chromosomes of the next
generation.

The SELECTION operator determines if a chromosome in
the current generation should be selected in the next gener-
ation or not. The chromosome with the highest fitness value
in the current generation is automatically selected in the next
generation. Subsequently, M 2 1 chromosomes are selected
from all the chromosomes in the current generation using
Roulette wheel selection (Wong et al., 2000) and then
moved into an intermediate pool. Note that the same chromo-
some may be selected more than once. This process consists
in computing the selection probability of each chromosome
according to its fitness value and the chromosomes with high
probability are randomly chosen into the intermediate pool.

The CROSSOVER operator exchanges the structure
between two chromosomes. For each pair of chromosomes
from the intermediate pool, a uniform crossover (Beasly
et al., 1993) with a probability Pc is carried out to randomly
distribute the genes from the two original chromosomes to
obtain two new chromosomes.

The MUTATION operator arbitrarily alters one or more
genes of chromosomes in the intermediate pool. Since high
mutation probability can transform the GA into a purely
random searching algorithm and too low probability can
often result in the premature convergence of GA, generally
the mutation probability is constrained to be in the range of
0.001–0.1. In this study, a self-adaptive mutation method is
employed to identify the optimal mutation probability with
the key idea that the adaptation of mutation probability is
based on the standard deviation of the fitness values of all
chromosomes in each generation. The mutation probability in
the i-th generation Pm

i is computed as:

Pi
m ¼

Pm � ½100:00� ð0:05� sÞ þ 1:00�; s � 0:05

Pm; s . 0:05

�

ð9Þ

Where Pm is the initial mutation probability set as 0.01. The
parameter s is the standard deviation of the fitness values.
Using Eq. (9), the enough diversity among all the chromo-
somes in each generation can be well maintained. With the
calculated mutation probability of the current generation, the
mutation probability of each gene (i.e. each bit) in each
weight value is further assigned with the principle that the
leftmost gene (i.e. the highest bit) should have the lowest
probability for mutation to guarantee that the real weight
value encoded by the 16 bits is reasonably changed after
mutation. The mutation probability of the j-th gene in each
weight value Pm

i ( j) is defined as below:

Pi
mð jÞ ¼ Pi

m � f ð jÞ; j ¼ 1; 2; . . . ; 16 ð10Þ

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p
p e�x2=2 ð11Þ

Here, f(x) is a standard normal distribution function that dis-
tributes diverse probability scale to each bit. Then, the
mutation operation is performed on the M 2 1 chromosomes
in the intermediate pool by changing the value of the j-th
character of each weight from 0 to 1 or from 1 to 0 with a
probability of Pm

i ( j).
After the accomplishment of the above mutation operator,

all the M 2 1 chromosomes in the intermediate pool are
merged into the new generation. In the fourth step, the above
iterative training procedures are carried out to obtain the
newer generation until fulfilling a terminal condition. The
terminal condition is that the maximum generation numbers
or the threshold of the fitness value is reached. At the end of
the training, the best chromosome with the highest fitness
from the last generation is selected to create an ANN predic-
tion model that can be used to perform a feed-forward com-
putation to obtain the prediction output over a test dataset.

The proposed GANN program with C þþ source code
was developed in our laboratory and it was implemented in a
Windows XP system. Using the PSAAP encoding as input,
GANN was used to construct a phosphorylation site predictor
named GANNPhos with the following configuration: (1) the
maximum generation number–1000; (2) the threshold of the
fitness value–0.7; (3) population size (M)–100; (4) crossover
probability (Pc)–0.9.

Back-propagation neural network (BPNN)
For the purpose of comparison, the BPNN with a single
hidden layer was also used to construct a phosphorylation
site predictor with the PSAAP vectors as input. The same
number of units (15 units) in the hidden layer and the same
activation function (sigmoid function) used in GANNPhos
were adopted.

Support vector machine
The SVM is a machine-learning algorithm for two classes of
classification with the goal to find a rule that best maps each
member of training set to the correct classification (Cai
et al., 2003; Dobson and Doig, 2003). In linearly separable
cases, SVM constructs a hyperplane that separates two differ-
ent groups of feature vectors in the training set with a
maximum margin. The orientation of a test sample relative
to the hyperplane gives the predicted score, and hence the
predicted class can be derived. For the purpose of
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comparison, the SVM algorithm was also used to predict the
phosphorylation sites. Apart from the PSAAP feature vectors
used as input, the orthogonal encoding was also employed.
The implementation of the SVM algorithm was SVM-Light
(http://svmlight.joachimms.org). The applied kernel functions
were the linear, polynomial and radial basis functions. Other
than changing the kernel functions, the algorithm was run
with the default settings in a Linux Platform.

Training and testing
In this study, three subsets (DB_N

0

S, DB_N
0

T and DB_N
0

Y)
were randomly constructed from DB_NS, DB_NT and
DB_NY to have the same size as DB_PS, DB_PT and
DB_PY, respectively. Each set of DB_PS, DB_PT and DB_PY

with the corresponding negative sets of DB_N
0

S, DB_N
0

T and
DB_N

0

Y to construct predictors for S, T and Y. A 10-fold
cross-validation was performed. The whole dataset (e.g.
DB_PS þ DB_N

0

S) was randomly divided into 10 subgroups
of roughly equal size. The sizes of the positive and negative
sites in each subgroup were set as the same. In each evalu-
ation step, one subgroup was selected for testing, while the
rest nine subgroups were used as the training dataset.
Concerning the PSAAP encoding, it should be emphasized
that the testing set was always excluded in deriving the Z
matrix. For each of phosphorylated sites (S, T or Y), 10
models were constructed to assess the performance (i.e.
10-fold cross-validation). To scrutinize the difference of pre-
dictive accuracy caused by the different choices of negative
datasets, the above 10-fold cross-validation was repeated 30
times by randomly changing the negative datasets (i.e.
DB_N

0

S, DB_N
0

T and DB_N
0

Y). Finally, the overall perform-
ance was averaged over these 30 times of 10-fold cross-
validation tests. It was found that the average accuracy
almost remained unchanged when the 10-fold cross-
validation test was carried out more than 10 times. Thus, the
current cross-validation reliably reflected the overall perform-
ance of the proposed method over the selected datasets. The
same training and testing procedures were used in assessing
the BPNN- and SVM-based predictors.

Results and Discussion

Prediction performance of GANNPhos
A novel phosphorylation site prediction system (i.e.
GANNPhos) has been developed by using our in-house
GANN program. Here, four measurements, i.e. Accuracy
(Ac), Sensitivity (Sn), Specificity (Sp) and MCC, were jointly
used to assess the performance of GANNPhos (Table I). The
overall prediction accuracy (Ac) of GANNPhos reached
81.1% for S (Sn ¼ 80.0%, Sp ¼ 82.1%, MCC¼ 0.621),
76.7% for T (Sn ¼ 72.1%, Sp¼ 81.3%, MCC¼ 0.536) and
73.3% for Y (Sn ¼ 70.9%, Sp¼ 75.8%, MCC ¼ 0.467).

To avoid the overweighing of negative sites, the similar
size of positive sites and negative sites in training a phos-
phorylation site predictor was used in the literature (Kim
et al., 2004; Iakoucheva et al., 2004). For instance, Kim
et al. (2004) reported that a maximum accuracy was achieved
when the ratio of positive and negative sites were set to 2:3
in their PredPhospho predictor. A balanced number of the
positive and negative sites (1:1) was used in training
DISPHOS (Iakoucheva et al., 2004). In this work, the ratio

of positive sites and negative sites was also set as 1:1,
although it may be further optimized to achieve a higher
accuracy.

To encode a site, the window size was set as 25 (i.e. n ¼
12) in the present study. In our preliminary testing of the
algorithm, it was found that the results were similar when
the window size ranged from 17 to 25 (data not shown).
These results are in good agreement with the general consen-
sus that the kinases physically contact a region of 7–12 resi-
dues surrounding the phosphorylated residue (Songyang
et al., 1994).

Although the reported accuracy of GANNPhos is relatively
high, the unreliable negative training set may still impact its
proteome-wide application. In this work, some phosphoryl-
ation sites which have not been experimentally discovered
are likely to be presented in the negative training set and
inevitably cause the ‘noise’ of our algorithm. To decrease
such type of ‘noise’, two strategies were reported in the lit-
erature (Blom et al., 1999; Iakoucheva et al., 2004). In the
first strategy adopted by Blom et al. (1999), all potential
acceptor residues in the entire set of protein sequences not
reported as being phosphorylated, were initially assigned as
negative sites. Subsequently, during initial neural network
training sessions, all negative sites predicted as positive sites
were excluded. The resulting dataset was used for the final
neural network training session. Compared with the random
selection of the negative sites, the predictive accuracy was
significantly increased in this so-called ‘augmented method’.
In the second strategy adopted in DISPHOS, the training pro-
cedure was repeated for I ¼ 30 random selections of negative
examples, and the final jury-based prediction on the test set
was made by averaging raw outputs from all I models
(Iakoucheva et al., 2004). It was estimated that if the I was
set as 1, the accuracy is decreased by 2–3% in each case
(Iakoucheva et al., 2004). Since more attention was paid on
investigating the performance based on the GANN algori-
thm, note that in this work the negative dataset was randomly
selected without any constraint. If the above strategies were
used in GANNPhos system, a higher performance would be
expected.

Comparison of GANNPhos with BPNN- and
SVM-based algorithms
Based on the same feature construction (i.e. PSAAP), the
conventional BPNN and SVM algorithms were also used to
build phosphorylation site predictors. Since the same dataset
and the same cross-validation method were chosen, it
allowed for a reliable comparison of performance resulted
from different algorithms. As clearly shown in Table II, the
Ac, Sn, Sp and MCC values reported in GANNPhos were
considerably higher than those of BPNN and SVM.
Compared with the BPNN-based predictor, the accuracy of
S, T and Y predictors in GANNPhos was increased by 2.8,
4.7 and 4.5%, respectively. Compared with the SVM-based
predictor, the increased accuracy was in the range of 1.0%
for S to 4.0% for T. The overall performance of BPNN and
SVM were comparable, although a higher accuracy was
observed in the SVM algorithm. Currently, BPNN and SVM
have been served as two major machine-learning tools in
constructing diverse prediction tasks within the field of
protein bioinformatics. The higher accuracy obtained by
GANNPhos as a case study in the phosphorylation site
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prediction suggests that the GANN program can be further
applied in other protein bioinformatics-related topics.

Comparison of different feature vectors
In this work, a new encoding named PSAAP with a relatively
low dimension to present a potential phosphorylation site
was developed. Using the SVM algorithm, we benchmarked
the accuracy resulted from the orthogonal and PSAAP encod-
ings. Since both encodings are position-specific and the
embedded information is close, a similar performance was
expected. The comparison confirmed that the overall accu-
racy based on these two encodings were almost identical,
although the PSAAP encoding was found to have a higher
accuracy (þ1.0%) in predicting phosphorylated Y sites
(Table II). Compared with BPNN and SVM, the learning
procedure in GANN is more computational time-consuming.
Therefore, the newly constructed PSAAP encoding is par-
ticularly suitable for the GANNPhos predictor.

In addition to the sequence-based encodings, structural
information has been considered in some predictors such as
NetPhos and DISPHOS. Compared with the available
sequence information, the experimentally determined struc-
tural data of proteins is still limited. Fortunately, many struc-
tural properties can be predicted with reasonable accuracy.
Therefore, how to effectively combine predicted structural
information with sequence information represents an import-
ant strategy to improve the accuracy of protein phosphoryla-
tion site prediction.

Comparison of GANNPhos with DISPHOS1.3
Since several kinase-non-specific phosphorylation site pre-
diction systems have been publicly available, it is important
and interesting to compare GANNPhos with some existing
predictors. As reported by Iakoucheva et al. (2004),

DISPHOS demonstrated higher accuracy when benchmarked
against NetPhos and Scansite. Therefore, DISPHOS remains
one of the best non-kinase-specific phosphorylation site pre-
dictors. This study is only focused on benchmarking our
GANNphos against DISPHOS1.3, the newest version of
DISPHOS.

The major differences among different predictors origi-
nated from many aspects such as the collection of dataset,
the choice of mathematical models, the selection of feature
vectors and cross-validation processes. Therefore, a compari-
son based merely on the accuracy reported by the original
papers is somehow subjective. Here, the training datasets
used in DISPHOS1.3 was further employed for training
GANNPhos, which allowed for a fair comparison of the per-
formance between these two predictors. As also shown in
Table II, the results of GANNPhos are fully comparable to
DISPHOS1.3, revealing almost identical accuracy in predict-
ing S and Y sites, a considerably higher accuracy in predict-
ing T sites (about þ5.0%).

Future development

The proposed GANNPhos has been benchmarked to have a
good performance, suggesting that it can serve as a competi-
tive predictor to be practically applied to detect potential
phosphorylation sites in proteins of interest. Concerning the
future development, the following two strategies should be
helpful to obtain a better prediction system. (1) In addition to
optimize the connection weights within an ANN, GA has
also been successfully employed to optimize the architecture
of an ANN (Heckerling et al., 2004). Therefore, integrating
the GA-based network architecture optimization into the
current GANNphos can result in a higher predictive accu-
racy; (2) Using some dimensionality reducing methods

Table II. The results of phosphorylation site prediction for GANNPhos and other algorithmsa

Site Method Datasetse Ac (%) Sn (%) Sp (%) MCC

S GANNPhos I 81.1+0.2 80.0+0.5 82.1+0.6 0.621+0.005
BPNN I 78.3+1.3 78.4+1.7 78.3+2.4 0.567+0.025
SVM_1b I 80.1+0.7 76.4+0.5 83.8+0.6 0.605+0.008
SVM_2c I 80.3+0.6 72.4+0.4 88.2+0.5 0.614+0.007
GANNPhos II 81.2+0.6 80.0+0.9 82.4+1.1 0.624+0.011
DISPHOS1.3d II 81.3 NAf NA NA

T GANNPhos I 76.7+0.8 72.1+2.2 81.3+1.8 0.536+0.016
BPNN I 72.0+1.1 70.2+2.6 73.7+2.4 0.439+0.021
SVM_1b I 72.6+1.7 63.5+1.1 82.0+1.4 0.461+0.020
SVM_2c I 72.3+1.4 57.7+1.0 87.0+1.3 0.469+0.017
GANNPhos II 79.8+1.4 75.3+2.3 84.3+2.1 0.598+0.028
DISPHOS1.3d II 74.9 NA NA NA

Y GANNPhos I 73.3+0.7 70.9+1.6 75.8+1.5 0.467+0.014
BPNN I 68.8+0.8 65.1+2.7 72.5+2.3 0.377+0.015
SVM_1b I 70.5+1.3 65.9+0.8 75.1+1.0 0.413+0.015
SVM_2c I 69.6+1.4 64.2+1.0 74.9+1.1 0.395+0.015
GANNPhos II 79.4+0.8 74.7+1.9 84.0+1.6 0.589+0.016
DISPHOS1.3d II 79.5 NA NA NA

aThe corresponding measurement in this work was represented as the average value +standard deviation.
bThe PSAAP vectors were used as input. The optimal results were obtained using the linear kernel function.
cThe orthogonal feature vectors were used as input. The optimal results were obtained using the polynomial kernel function.
dThe corresponding values were cited from http://www.ist.temple.edu/DISPHOS.
eThe dataset I was based on the Phospho.ELM database. The dataset II was the training data set used in DISPHOS1.3. More details about these two datasets
can be found in Table I.
fThe corresponding value was not available.

Prediction of phosphorylation sites

411



reported in the literature (Dobson and Doig, 2003;
Iakoucheva et al., 2004; Zhang et al., 2005) to effectively
combine and refine the available features (e.g. predicted
structure information) is promising to construct a better pre-
dictor. Finally, it should be emphasized that the GANN
algorithm developed in this work can be used in many
diverse prediction tasks and it may be expected to serve as
an important algorithm in computational function prediction
of proteins in the post-genomic era (Ofran et al., 2005).
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