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ABSTRACT An increasing attention has been
dedicated to the characterization of complex net-
works within the protein world. This work is report-
ing how we uncovered networked structures that
reflected the structural similarities among protein
binding sites. First, a 211 binding sites dataset has
been compiled by removing the redundant proteins
in the Protein Ligand Database (PLD) (http://www-
mitchell.ch.cam.ac.uk/pld/). Using a clique detection
algorithm we have performed all-against-all bind-
ing site comparisons among the 211 available ones.
Within the set of nodes representing each binding
site an edge was added whenever a pair of binding
sites had a similarity higher than a threshold value.
The generated similarity networks revealed that
many nodes had few links and only few were highly
connected, but due to the limited data available it
was not possible to definitively prove a scale-free
architecture. Within the same dataset, the binding
site similarity networks were compared with the
networks of sequence and fold similarity networks.
In the protein world, indications were found that
structure is better conserved than sequence, but on
its own, sequence was better conserved than the
subset of functional residues forming the binding
site. Because a binding site is strongly linked with
protein function, the identification of protein bind-
ing site similarity networks could accelerate the
functional annotation of newly identified genes. In
view of this we have discussed several potential
applications of binding site similarity networks,
such as the construction of novel binding site classi-
fication databases, as well as the implications for
protein molecular design in general and computa-
tional chemogenomics in particular. Proteins 2006;
62:470–478. © 2005 Wiley-Liss, Inc.
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INTRODUCTION

Complex systems can be represented as networks of
interactions occurring between their components. The
study of such networks is gaining importance in many
disciplines.1 Any system of interconnected objects, such as
the ensemble of Web sites linked by cross-references, the
business and social relationships established between
people, the electrical power grids, and the co-authorships
and co-citations among scientists, can be regarded as
networks.1,2 Because the structure of a network directly

affects its function, the global characterization of the
topology is crucial. Studies of numerous and diverse
real-world networks have provided interesting insights in
the growth and dynamics of the related physical systems.
Two common properties of these networks are that they
are organized around a small-world3 and scale-free4 archi-
tecture. Recently, biological systems were also scrutinized,
and researchers have demonstrated that molecular inter-
action networks involved in cellular, metabolic, and tran-
scriptional regulatory processes exhibit some similar topo-
logical properties.5–9

Efforts have been made to apply network concepts to
describe the protein molecular world, ranging from protein–
protein interactions,10 to interactions within families of
protein domains,11,12 to amino acids contacts within pro-
tein structures,2,13 to conformational spaces of transition
states in protein folding,14 to protein family and fold
occurrence and distribution in genomes,15 to protein fold
similarity networks in the protein structural universe.16

These investigations have provided systematic and deeper
understanding of the evolution and diversity of proteins.

With the progress of hundreds of genome projects, a
huge number of genome sequences became available.
However, a large fraction of gene products turned out to be
difficult to annotate and remained a challenge for post-
genomic bioinformatics. The most common way of infer-
ring the biological function of a new gene is based on
evaluating its sequence similarity with proteins of known
function. A number of sequence comparison methods are
currently available, and are widely applied. Recently,
structural genomics initiatives embarked on high-through-
put X-ray crystallography and NMR spectroscopy to obtain
a comprehensive coverage of the protein structural world.17

The tremendous increase of experimentally determined
protein structures put at reach an even larger number of
protein structures through the use of homology modelling
and fold recognition. For example, Zhang and Skolnick18

examined the “structural” completeness of the version of
the Protein Data Bank (PDB) in 2004. The authors found
that the protein-folding problem can, in principle, be
solved for practically any sequence based on this version of
the PDB library provided that efficient fold recognition
algorithms can recover correct sequence alignments. The
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true reason for the success of the structural annotation
methods is that protein shape is more conserved than
sequence and is closely related to protein function.19

Structural comparisons were therefore able to identify
functional relationships even when no clear sequence
similarity was detectable. Protein structural analysis be-
came an important source for understanding the func-
tional role of new proteins, and is now often referred to as
“structure-based functional annotation.”

However, relatedness in sequence or fold does not neces-
sarily imply a similar function. For example, functionally
unrelated analogous proteins evolved from divergent ances-
tors to fold in similar structures. Moreover, it was found
that the conservation of function between a pair of en-
zymes becomes questionable when sequence identity drops
below 40%.20 Alternatively, proteins with the same fold,
like Tim barrels, can have multiple functions.21 Protein
function is very often encoded in a small number of
residues located in the functional active site, which are
dispersed around the primary sequence, but packed in a
compact spatial region. Evidence is accumulating demon-
strating that molecular recognition patterns are much
more conserved within the binding pockets of proteins of
similar function. Therefore, the detection and comparison
of protein binding sites is emerging as an important topic
in structural biology.

Several binding site comparison methods have been
developed in the past decade.22–28 A first group of methods
is focused on analyzing the structural motifs among the
binding sites. Artymiuk et al.25 represented each side
chain by pseudo-atoms and used a subgraph-isomorphism
algorithm to identify the spatially conserved patterns. The
TESS29 method, based on the geometric hashing algo-
rithm, has been used for the efficient comparison of a
query protein to a template of a catalytic triad.29 Russell
and co-worker developed a different method that was able
to detect side-chain geometric patterns common to two
binding sites, and a statistical significance score was
derived that quantified the degree of binding site similar-
ity.23 The second group of methods focused on the chemical
nature of the binding sites to be compared. As an example,
Kinoshita et al.24 performed clique detection on the verti-
ces of the triangulated solvent-accessible surface to ad-
dress the similarity of binding sites. For the same purpose,
Schmitt et al.28 used generic pseudo-centers that effi-
ciently encoded the physicochemical environments that
are important in molecular interactions. Each amino acid
residue of a protein was represented as a set of such
centers. The clique detection algorithm was also used to
retrieve cavities that are similar to a specific query cav-
ity.28 Very recently, a novel method, SiteEngine, based on
an efficient hashing of the matching triangles of centers of
physicochemical properties, has been developed.30 Based
on the available algorithms, several binding site databases
were compiled, such as CaveBase,28 eF-site,24 and SUR-
FACE,26 to cite a few. These databases have been inte-
grated into Web servers to allow for the identification of
the potential binding sites in query protein struc-
tures.23,24,26,31 A successful application of the available

data was recently reported that allowed for the inference
of a function for the non-annotated protein structures
determined within the Structural Genomics Initiative.24

However, efforts are required to improve the reliability of
these databases, by improving the similarity measures for
binding pockets as well as the criteria for quantifying
statistical significance.

As reported in the literature,15,16 protein sequence or
fold similarity networks within different genomes have
been already derived and found to provide valuable insight
on the evolution of proteins. However, to the best of our
knowledge, a detailed and systematic study of the similar-
ity networks of protein binding sites is still not available.
In the present article, we attempted to uncover such
similarity networks. In a first section we are deriving the
similarity networks of protein binding sites within the
PLD database32 using a binding site comparison algo-
rithm. In a second section we focused on the characteriza-
tion of these similarity networks by comparing them to the
similarity networks of protein sequences and protein
structures. Finally, several potential applications of the
obtained results are discussed.

METHODS
Protein Binding Site Database

In the present study, we employed the Protein Ligand
Database (PLD)32 to derive similarity networks of binding
sites. We obtained the PLD (v1.3) from http://www-
mitchell.ch.cam.ac.uk/pld/, which contained 485 protein–
ligand complexes. After removing the redundant proteins
in this database by keeping only one protein from pairs
sharing more than 95% sequence identity, 211 protein–
ligand complexes remained for further study. At this point
three datasets were compiled: (1) The binding sites data-
set. The binding site residues were selected as those
residues having any atom closer than 4.5 Å from the ligand
molecule; thus, we obtained the binding site PDB files for
these 211 protein–complexes. (2) The PDB files for the 211
proteins. For those proteins with multiple chains, in some
cases the binding site residues came from different chains.
However, the combinatorial expansion (CE) algorithm33

that we used to perform the pairwise structural compari-
son was not operational with multiple-chain proteins.
Therefore, for those proteins with multiple chains, only the
chain containing the maximal number of binding residues
was taken into account. (3) We compiled a dataset of the
211 protein sequences in the Fasta format. In a way
similar to protein structural comparisons, protein se-
quence matching algorithms were not functioning with
multimer proteins. Again, for those proteins with more
than one chain, we considered only the sequence of the
chain bearing the maximal number of binding residues.

Comparison of Binding Site Similarity

To perform the binding site similarity comparison, the
clique-detection method was applied, by taking the follow-
ing four steps. First, the binding sites under investigation
were converted into two input graphs. The geometric
center of the side chain of each binding residue was
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represented as a vertex in the graph. Because no side
chain exists for glycine, the C� atom was considered as a
node in the case of this residue. Further, a vertex was
colored in four (PLD-BSSN-I) or eight (PLD-BSSN-II)
different colors according to the physicochemical proper-
ties of the parent residue [for PLD-BSSN-I: I (LVIMC), II
(AGSTP), III (FYW) and IV (EDNQKRH), and for PLD-
BSSN-II: I (LVIMC), II (AG), III (ST), IV (P), V (FYW), VI
(EDNQ), VII (KR), VIII (H)].34 The branching of the
molecular graph used to encode a binding site was gener-
ated by connecting two vertices by an edge whenever the
distance between them was less than 12.0 Å. In a second
step, the similarity between any two colored graphs G1
and G2 was evaluated by deriving the so-called product
graph P. Each node of P consisted of a pair of nodes with
identical colors originating from the input graphs. Two
nodes of P were connected by an edge if the respective
matchings of G1 in G2 were compatible, that is, that the
difference of the corresponding distances in G1 and G2 was
less than 2.0 Å. The maximal complete subgraph (clique) of
P was detected by the Bron-Kerbosh algorithm.35 Finally,
the binding site similarity was quantified by the Tanimoto
coefficient, defined as:

Sim �
Nsub

N1 � N2 � Nsub
(1)

where N1, N2, and Nsub represented the number of nodes
in G1, G2, and the maximal subgraph between G1 and G2,
respectively. Further details about the clique detection
algorithm in the comparison of binding sites could be
found in the works of Schmitt et al.28 and Weskamp et al.36

Construction of Binding Site Similarity Networks

To construct the two binding similarity networks for the
211 binding sites available in PLD, a pairwise binding site
comparison was performed by applying the procedure just
discussed. The average Tanimoto similarity for the 22155
(211 � 210/2) pairs was 0.20, with a standard deviation of
0.05 (PLD-BSSN-I). Therefore, we considered as similar in
a statistically significant way the pairs of binding sites
with Tanimoto similarity higher than 0.35, that is, with
Z-scores greater than 3.0, to which corresponded a P-value
of less than 0.005. Then, we repeated the pairwise compari-
son for the 211 binding sites for the PLD-BSSN-II net-
work. In this case, the average similarity value was
0.165 � 0.045, and we chose a score higher than 0.30 as the
cutoff for the connectivity between two binding sites.
Consequently, the two similarity networks for the 211
binding sites were constructed, by linking the relevant
pairs with 214 edges in the case of the PLD-BSSN-I
network and 176 edges in the case of the PLD-BSSN-II
one.

Construction of Protein Sequence and Structural
Similarity Networks

To better situate our findings concerning the similarity
networks of protein binding sites, the sequence and struc-
tural similarity networks for the 211 proteins in the PLD
were also constructed. The pairwise sequence similarity

was evaluated by using FASTA,37 and an edge between
two proteins was added whenever the sequence identity
between two sequences was larger than 40%. To evaluate
pairwise structural similarities we applied the combinato-
rial extension (CE)33 to perform an all-against-all compari-
son for the 211 proteins, where an edge between any two
protein structures was set up if the CE Z-score was larger
than 4.2, indicative of at least a fold level structural
similarity.

RESULTS AND DISCUSSION
Connectivity within Networks of Binding Sites
Similarities

In the present study, we have developed a binding site
comparison method based on the well-known clique detec-
tion algorithm, which can be used for the fast evaluation of
the similarity between two graphs. The binding site simi-
larity was quantified by the Tanimoto coefficient, ranging
between 0 and 1, with the higher values corresponding to a
higher level of similarity. To construct the protein Binding
Site Similarity Network for the PLD database (PLD-
BSSN), an all-against-all binding site comparison was
carried out. In this work we investigated how chemical
diversity, provided by the amino acids located in the
binding sites would reflect on the structure of the network.
For this we divided the binding site residues into 4
(PLD-BSSN-I) and 8 classes (PLD-BSSN-II), based on the
physicochemical properties of the 20 amino acids. Clearly,
the PLD-BSSN-I was rather focused on the comparison of
the binding site topology itself, while we expected the
structure of the PLD-BSSN-II network to be influenced to
a greater extent by the chemical nature of the binding
sites. A typical example of a pair of proteins with low
sequence identity, but high binding site similarity is
shown in Figure 1. In this example, the binding site of a
porcine metalloprotease (PDB entry: 1fbl, EC3.4.24.7),
composed out of 16 residues, was complexing the HTA
ligand (n-[3-(n�-hydroxycarboxamido)-2-(2-methylpropyl)-
propanoyl]-o-tyrosine-n-methylamide). Although the se-
quence identity was only 28%, this porcine metallopro-
tease shared a relatively high similarity (Tanimoto
coefficient of 0.52) with a human hydrolase (PDB entry:
1sln; EC3.4.24.17) with a binding site that comprised
another 16 residues binding the INH ligand (N-(r-carboxy-
ethyl)-alpha-(s)-(2-phenylethyl) glycyl-l-arginine-n-phenyl-
amide). The size of the maximal subgraph of the two
binding sites calculated with our algorithm was 11, thus
giving a Tanimoto similarity of 11/(16 � 16 � 11) � 0.52,
which indicated a significant binding site similarity.

In the first network PLD-BSSN-I the vertices, represen-
tative of the 211 different binding sites, were connected by
an edge if a pair of vertices had a similarity score larger
than 0.35. As a result, 73 out of the 211 nonredundant
protein binding sites in PLD were found to be singletons,
as they had no other similar binding site. Thus, the
PLD-BSSN-I network contained 138 vertices that had at
least one neighbor, with an average number of nearly
three edges per vertex. The graph representation of this
network revealed a modular architecture that contained
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several highly connected clusters (Fig. 2). The same simi-
larity threshold was applied to obtain the PLD-BSSN-II
network that contained 142 connected vertices, with an
average number of almost 2.5 edges per node. The chemi-
cal diversity introduced by the finer stratification of the
amino acid types is reflected by the lower average connec-
tivity in the PLD-BSSN-II network, indicating a lower
average similarity.

Further, we focused our attention to the characteriza-
tion of the global topological properties of the two similar-
ity networks. Our first objective was to search for indica-

tions of these networks being small-world and scale-free.
To find out if these networks were small-world, we consid-
ered random networks of equal size as references. Gener-
ally, a small-world network has a relatively short charac-
teristic path length (L) and a high clustering coefficient
(C). L is defined as the number of links in the shortest path
between two vertices averaged over all pairs of vertices,
while C is a measure of the local clustering within a
network. As defined by Watts and Strogatz,3 if a vertex v
has kv neighbors, then the maximum number of links
between these neighbors is [kv (kv � 1)]/2. Cv gives the
fraction of these possible links that actually exist, and C is
then defined as the average Cv over all vertices v. In
comparison with a random network of the same size, the
parameters L and C in a small-world network satisfy to
two criteria: (1) Csmall-world far exceeds Crandom, and (2)
Lsmall-world slightly exceeds Lrandom. The values of these
quantities that we calculated for the corresponding net-
works PLD-BSSN-I and PLD-BSSN-II are summarized in
Table I. The results suggested that the PLD-BSSN-I
network might be small-world, whereas the PLD-BSSN-II
network clearly failed to satisfy to the conditions for a
network to be considered as small-world.

Consequently, we tried to determine if the two similarity
networks were scale-free. Scale-free networks typically
have many nodes with few links, and only few highly
connected ones. In contrast to a random network in which
the connectivity distribution obeys a Poisson distribution,
the probability P(k) of nodes having k edges, decays as a
power law P(k) � k�� in scale-free networks. First, we
analyzed the distribution patterns for the PLD-BSSN-I
and PLS-BSSN-II binding site similarity networks. For
this we plotted the connectivity distributions on a double
logarithmic scale for the more reliable identification of a
linear fit for the data, characteristic of a scale-free topology
[cf. Fig. 3(b)]. The binding site similarity networks were
approximately characterized by power laws, where P(k) 	
k�142 (R2 � 0.87) in the case of PLD-BSSN-I, and P(k) 	
k�1.60 (R2 � 0.88) for PLD-BSSN-II, respectively. We
conducted a second analysis to verify if it was possible to
model the data with an exponential distribution, as connec-
tivity distributions of this type have been already observed
in real-world networks. It was found that the data in the
two binding site similarity networks can be equally well
explained by exponential laws, where P(k) 	 10�0.207k

(R2 � 0.92) in the case of PLD-BSSN-I and P(k) 	
10�0.1266k (R2 � 0.85) for PLD-BSSN-II. In particular, the
data for the PLD-BSSN-I network deviated from a power
law behavior in a very clear way, being closer to an
exponential distribution.

It is well known that power law can be fitted reliably
only when several orders of magnitude are considered.
Although from our results it might be conjectured that the
connectivity distributions of the PLD-BSSN-I and PLD-
BSSN-II networks could follow such a distribution law, it
should be emphasized that the data extends just one order
of magnitude. Therefore, it was not possible to make a
definitive conclusion about the scale-free architecture of
the binding site similarity networks.

Fig. 1. Surface representation of two binding sites. The binding site of
a porcine metalloprotease (PDB entry: 1fbl) (a) shared a relatively high
similarity (Tanimoto coefficient of 0.52) with a human hydrolase (PDB
entry: 1sln) (b), although their sequence identity was only 28%. The figure
was generated by using the Sybyl molecular modeling software package
(SYBYL 6.8, Tripos Inc., St. Louis, MO; 2000), with the respective ligands
displayed in a sticks representation.
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The current PLD dataset of some 211 binding sites is far
from being complete, as it does not contain all of the
protein structures for which the binding sites have been
identified experimentally. To have a more reasonable
characterization of the nature of binding site similarity
networks, a larger dataset would be required.

In the PLD-BSSN networks that we derived, we have
identified several highly connected hubs that were repre-
sentative of the “generic” binding sites in the PLD data-
base. In Table II we have listed the top 10 binding sites
with the highest number of structural neighbors, referred
to as the binding site “hubs”. As reported by Park et al.,12

Fig. 2. The binding site similarity network PLD-BSSN-I. This figure was prepared using the Pajek software
(http://vlado.fmf.uni-lj.si/pub/networks/pajek/).

TABLE I. Characteristic Path Lengths and Clustering
Coefficents for the Networksa

Lobserved Lrandom Cobserved Crandom

PLD-BSSN-I 3.97 3.22 0.153 0.022
PLD-BSSN-II 5.33 5.46 0.169 0.017
aWe applied the formulae Lrandom � In N/In k and Crandom � k/N for a random
network with the same number of nodes (N) and average number of links
(k).2,42

Fig. 3. Topological properties of the binding site similarity networks PLD-BSSN-I and PLD-BSSN-II. Blue and red data points belong to the
PLD-BSSN-I and PLD-BSSN-II networks, respectively. (a) The distribution of node connectivity P(k). (b) The log–log plot. The blue and red straight lines
correspond to the power-law fits for PLD-BSSN-I and PLD-BSSN-II networks, respectively.
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immunoglobulins and serine proteases have been identi-
fied to be the most connected nodes in the networks of
protein domain interactions. These “hub” proteins are
quite versatile interaction partners, and they easily “com-
bine” with many other protein domains to support diverse
functional roles. Interestingly enough, we found out that
the binding sites of immunoglobulins and serine proteases
appeared as top-ranked hubs in our binding site similarity
networks, a fact that further corroborates their functional
polyvalence. Among the top 10 hubs in the PLD-BSSN-I
network, six of the binding sites came from immunoglobu-
lins or serine proteases. For instance, thrombin is involved
in multiple functional roles: fibrinolysis, platelet aggrega-
tion, coagulation, peripheral blood cell activation, cell
growth, and cellular migration. With seven partner nodes
in PLD-BSSN-I, the binding site of thrombin was ranked
as the top-10 hub. It might be hypothesized that the highly
connected binding sites originated very early in evolution,
but to prove this argument, further comparisons of the
occurrence of these binding sites in different organisms
would be required.

Relationships Among Protein Sequence,
Structural, and Binding Site Similarity

To start with, we performed a detailed comparison of the
binding site similarity networks based on the four-class
(PLD-BSSN-I) and eight-class (PLD-BSSN-II) encodings.
As illustrated in Figure 4(a), protein pairs always shared
larger similarities based on the four-class encoding than
that based on the eight-class encoding. According to the
hierarchal classification of the 20 amino acids developed
by Murphy et al.,34 the four-class and eight-class encoding
was consistent in reflecting the different levels of cluster-
ing of the side chains’ physicochemical properties. As
expected, a binding site representation of the detailed
physicochemical properties of the amino acids (eight-class)
led to a higher diversity and an increased dissimilarity of
the binding sites [cf. Fig. 4(a)]. For instance, 214 pairs
were found to have a significant similarity based on the
four-class encoding, while only 176 pairs were recognized
to share a similar binding site by considering the eight-
class encoding. Therefore, in comparison to PLD-BSSN-II,
PLD-BSSN-I has a larger number of highly connected

nodes (hubs) and a higher average connectivity. For ex-
ample, the average connectivity of PLD-BSSN-I was about
3.0, which is higher than that of PLD-BSSN-II where
every node had 2.5 neighbors on average.

In the present study, we have also constructed the
sequence and structural similarity networks for the 211
PLD proteins. Although the scale-free structure of the
protein sequence and fold similarity networks have been
demonstrated in previous works, we were not able to
clearly identify these properties in the sequence and fold
similarity networks that we derived in our work. As shown
in Figure 5(a) and (b), the connectivity distributions that
we observed significantly deviated from a power law
behavior. A reason for this might be that some protein
families were redundantly represented in the PLD data-
base. Moreover, as in the case of the binding site similarity
networks, the data spanned only a limited range on a log
scale, therefore preventing a reliable characterization of
the scale-free topology of the protein sequence and fold
similarity networks to be made. In the similarity network
of protein sequences, 99 proteins had only one neighbor,
whereas 35 proteins were found to be totally isolated in the
structural similarity network. In comparison with the
similarity network of protein binding sites, a larger num-
ber of hubs were present in the protein sequence and
structure similarity networks. For example, the maximal
number of hubs in the PLD-BSSN-I binding site similarity
network was 14, while this number was 19 and 25 for the
sequence and structural similarity networks, respectively.
The average connectivities for the protein sequence and
structural similarity networks were 4.7 and 8.6, respec-
tively, much higher than these of the binding site similar-
ity networks reported above.

It is interesting to compare the similarity among the
binding sites with the similarity of proteins at the se-
quence and structural levels, as this point was not ad-
dressed in previous studies. In principle, protein structure
is better conserved than sequence, and protein pairs that
share high sequence identity (e.g., 
40%) usually are
folding in the same way. However, protein pairs of low
sequence identity often share significant structural similar-
ity. We were able to verify these trends even within the
very limited set of proteins included in PLD [cf. Fig. 4 (b)].

TABLE II. The 10 Most Highly Connected Binding Sites within the PLD-BSSN-I Network

PDB Code Protein Ligand kv

1 1ive Influenza A subtype n2 neuraminidase 4-(acetylamino)-3-aminobenzoic acid [BANA 108] 9
2 2pk4 Human plasminogen kringle 4 Aminocaproic acid 8
3 2msb Mannose-binding protein a Glycopeptide (oligomannose asparaginyl oligosaccharide) 8
4 1ptv Protein tyrosine phosphatase 1b Phosphotyrosine 8
5 2mcp Immunoglobulin Phosphocholine 7
6 1tet Te33-Fab fragment of monoclonal antibody

elicited against cholera toxin peptide 3
(CTP3)

Citrate 7

7 1slt S-lectin N-acetyllactosamine 7
8 1fig Immunoglobulin g1 fab� fragment 8-hydroxy-2-oxa-nicyclo [3:3.1] non-6-ene-3, 5-dicarboxylic acid 7
9 1bra Trypsin Benzamidine 7
10 1bcu Alpha-thrombin Hirugen and proflavin 7
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When the identity for two proteins was larger than 40%,
they generally fold in similar structures, with CE Z-scores
larger than 4.2. We found out that a significant sequence
similarity did not necessary imply a significant similarity
of the respective binding sites. Within the 240 protein
pairs with sequence identities higher than 40%, only 46
(about 20%) shared a significant binding site similarity
[Fig. 4(c)]. On the other hand, a low sequence similarity
was not correlated with a lower binding site similarity. Of
the 21965 pairs with low sequence identity (e.g., �40%),
only 168 pairs (0.8%) still had a significant binding site
similarity (e.g., Tanimoto similarity higher than 0.35). In
conclusion, the pairs with a sequence similarity higher
than 40% were found to have a 25-fold higher chance to
share a similar binding site. A similar result was also
obtained by comparing the frequency of occurrence of
binding site similarity with that of fold similarity among
the 211 proteins in PLD. Among the 655 pairs of proteins
that shared similar structures, 14% exhibited a significant

binding site similarity [Fig. 4(d)]. On the contrary, only
0.6% of those pairs without significant structural similar-
ity shared similar binding sites.

We have performed some investigations on those protein
pairs with high sequence or fold similarities but without
significant binding site similarity. It turned out that current
binding site comparison algorithms experience difficulties to
take in account protein flexibility, mostly due to the defini-
tion of the binding sites. For instance, porcine and avian
citrate synthases (PDB entries 4cts and 2csc) shared 91%
sequence identity, and the structural superimposition be-
tween them revealed that these two enzymes shared a
similar binding site, because the superimposed ligands were
closely located. However, the size of the ligands in the avian
citrate synthase (D-malate and carboxymethyl coenzyme A)
was larger than that of the ligand in the porcine enzyme
(oxaloacetate). As a result, the sizes of the defined binding
sites appearing within the current algorithm were quite
different, which was reflected in a low binding site similarity.

Fig. 4. The relationship between binding site, sequence, and structural similarity of proteins. (a) Comparison of binding similarities based on amino
acid encoding in four and eight classes. (b) Comparison between sequence similarity and structural similarity. (c) Comparison between sequence
similarity and binding site similarity (four-encoding). (d) Comparison between structural similarity and binding sites similarity (four-encoding). Significant
sequence, structural, and binding site similarity (four-encoding and eight-encoding) are recognized in those pairs of proteins with a sequence identity
larger than 40%, with CE Z-score greater than 4.2, and a Tanimoto similarities greater than 0.35 and 0.30, respectively. The lines showing the
corresponding cutoff values are highlighted in each panel.
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Even so, the current observation within the PLD database
has demonstrated that the relationship between the similar-
ity of protein binding sites and the similarity of protein
sequences and structures is not straightforward. A further
investigation should certainly take in account the flexibility
of binding sites upon ligand docking. However, we have
obtained already here indications that the similarity of
protein binding sites seems less conserved than the related-
ness among protein sequences or structures.

Based on the above detailed comparisons, it can be
conjectured that in a arbitrary sample of protein mol-
ecules, here represented by the PLD database, the protein
similarity should be the highest at the structural level,
followed by sequence similarity, while protein molecules
would turn to be mostly dissimilar with respect to the
structure of their binding sites. However, to prove this
argument improved binding site comparison algorithms
should be used, that take into account protein flexibility
upon ligand binding, and that are to be applied to much
larger protein datasets.

Applications

The possibility to determine pairwise binding site similari-
ties is opening avenues for potential new applications. The
characterized similarity networks of protein binding sites
imply that these binding sites could be clustered in a
hierarchical way, so that an entirely new classification
scheme could be proposed for the implementation of protein
binding site databases. In turn, such modular databases,
enriched with the already available protein sequence family
and structural information, will provide new tools to under-
stand and predict protein function. The detection of a binding
site similarity might be used for the functional annotation of
those known or predicted gene products for which function
cannot be inferred by the classical comparative sequence- or
structure-based methods. Indeed, the comparison of binding
sites is increasingly used to accelerate the in silico annotation
of functionally unknown genes.38

A second application could be identified in the area of de
novo enzyme molecular design. The catalytic function of
enzymes is the result of natural evolution, and biochemists
have tried for more than one century to understand the
underlying chemical mechanisms.39 The ultimate test of
our understanding of enzyme catalysis would be the design
and production of enzyme chimeras from scratch. To
achieve this goal, an important step consists in manipulat-
ing the catalytic residues of an already known binding site.
Using computer-based rational design, for instance, Dw-
yer et al.40 turned the inverting ribose-binding protein into
a triose phosphate isomerase. Undoubtedly, the availabil-
ity of an extensive similarity network of protein binding
sites will be useful to assess the de novo designability of
novel enzymatic functions.

A third important application concerns structure-based
drug design activities. Indeed, provided that an extensive
similarity network of protein binding sites is at hand, the
neighbors of a target binding site will provide valuable
information for the most relevant potential ligands to be
screened on the orphan receptor. The position of the target
binding site in the hierarchical similarity network might be
indicative of the level to which specificity could be obtained.
Indeed, in the case when the binding site of the protein target
turns out to be a “hub,” with a large number of related sites,
the design of a highly specific bioactive molecule will hardly
succeed, as other targets with similar binding sites might
bind the same molecule. However, an advantage in such
situations is that the designed bioactive molecule might have
multiple functionalities. In any case, the analysis of the
similarity network of protein binding sites in the early
phases of a project has the potential to become a routine tool
for structure-based drug design. Such a tool would be espe-
cially informative for emerging disciplines such as chemog-
enomics,41 which has the ambitious task of identifying all
possible drugs for all possible targets.

CONCLUSIONS

We have uncovered novel network structures in the
world of proteins that consisted in a hierarchically orga-
nized structural relationship among protein binding sites.
The generated similarity networks of protein binding sites

Fig. 5. Topological properties of sequence and structural similarity
networks constructed for the 211 PLD proteins. Data points encoded with
green triangles and yellow rectangles represent the sequence similarity
network and the structural similarity network, respectively. (a) The
distribution of node connectivity P(k). (b) The log–log plot. The green and
yellow straight lines correspond to the power-law fits for the sequence and
structural similarity networks, respectively.
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have been found to have a few highly connected hubs as
well as many nodes with few links. Considering the small
data set (PLD database) used in the present study, we
were not able to definitively prove that these networks
have scale-free and small-world properties. Due to compli-
cated evolution of protein binding sites, the relationship
between protein binding similarity and protein sequence
or structural similarity is not straightforward. Generally,
those pairs with higher sequence or structural similarity
tend to exhibit a higher binding site similarity. This allows
for integration of the binding site comparisons into the
pipeline of computational functional annotation that until
now was exclusively based on the assessment of sequence
similarity, and to a lesser extent on structural homology.
The binding site similarity networks uncover new perspec-
tives in the construction of hierarchical classification
databases, in the improvement of de novo design of en-
zymes, and in the enhancement of the efficiency of struc-
ture-based drug design activities.
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