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Can simple codon pair usage predict protein–protein interaction?w
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Deciphering functional interactions between proteins is one of the great challenges in biology.

Sequence-based homology-free encoding schemes have been increasingly applied to develop promising

protein–protein interaction (PPI) predictors by means of statistical or machine learning methods. Here

we analyze the relationship between codon pair usage and PPIs in yeast. We show that codon pair

usage of interacting protein pairs differs significantly from randomly expected. This motivates the

development of a novel approach for predicting PPIs, with codon pair frequency difference as input

to a Support Vector Machine predictor, termed as CCPPI. 10-fold cross-validation tests based on

yeast PPI datasets with balanced positive-to-negative ratios indicate that CCPPI performs better than

other sequence-based encoding schemes. Moreover, it ranks the best when tested on an unbalanced

large-scale dataset. Although CCPPI is subjected to high false positive rates like many PPI predictors,

statistical analyses of the predicted true positives confirm that the success of CCPPI is partly ascribed

to its capability to capture proteomic co-expression and functional similarities between interacting

protein pairs. Our findings suggest that codon pairs of interacting protein pairs evolve in a

coordinated manner and consequently they provide additional information beyond amino acids-based

encoding schemes. CCPPI has been made freely available at: http://protein.cau.edu.cn/ccppi.

Introduction

Protein–protein interactions (PPIs) provide important insights

into protein function and cell organization.1 Using high-

throughput experimental techniques like yeast two-hybrid

screening2 and tandem-affinity purification coupled with mass

spectrometry,3 miniatures of the interactomes of a few model

organisms have been revealed so far. However, these experimental

methods are relatively expensive and labor intensive, while

suffering from insufficient coverage. Consequently, it is greatly

desired to develop computational approaches to predict PPIs.4

One of the most validated PPI prediction methods is interolog-

based, which transfers interaction annotation from a protein

pair in a species to the orthologous protein pairs in other

species.5,6 Nevertheless, as this method relies on interaction

data from related organisms, it does not perform well in distal

organisms. To address this, a common complementary method

was developed based on domain–domain interactions,7,8 which

relies on known interacting domains9,10 and has a higher false

positive rate.11 Other methods usually take advantage of the

observed evolutionary or functional relationship of interacting

proteins to predict PPIs. For example, the phylogenetic profile

methods predict PPIs among co-occurring protein pairs from

different genomes;12 the co-expression approaches use the

expression profile similarity to detect PPIs;13,14 while function-

basedmethods examine the functional similarity of a query protein

pair to judge whether they interact or not.15 In general, these kinds

of methods can discover functionally associated protein pairs, but

not necessarily the physical interactions between proteins.8,16

The strong dependency on evolutionary or functional

information of the aforementioned methods has led to a

plethora of simple sequence-based PPI prediction methods.

These methods aim to predict physical PPIs based on short

sequence unit frequency,17–21 rather than homology. For

example, the conjoint triad (CT) encoding scheme20 proposed

by Shen et al. based on the calculation of tri-peptide frequencies

was shown to achieve good results in the human PPI dataset.

Using auto covariance (AC) of physicochemical features derived

from spaced amino acid pairs, Guo et al.18 achieved acceptable

performance on the yeast (Saccharomyces cerevisiae) dataset. The

related PPI prediction methods and reported performance are

summarized in Table S1 (ESIw). Most of these sequence-based

studies exploited amino acid-centric encoding schemes to

develop PPI predictors, as proteins rather than DNAs or

RNAs are the primary components of PPIs.
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The central dogma of molecular biology22 defines the

direction of bio-information flow, but does not promise

perfect transferring efficiency or identity. It is well established

that the usage of synonymous codons is a factor that affects

the expression level of proteins in microorganisms and is inter-

species biased.23 This bias has been shown to correlate with the

abundance of different tRNA species,24 and exerts a strong

influence over translation rates in various organisms.25

Furthermore, synonymous codon usage has also been suggested

to influence protein folding under certain circumstances. For

example, synonymous substitutions of rare codons into more

frequent codons in a fatty acid binding protein expressed in

Escherichia coli could induce its misfolding.26 Such phenomena

are interpreted as a reflection of the translation rate control that

facilitates co-translational protein folding.27 Moreover, a recent

large-scale study has identified synonymous codons that have

appreciable preferences towards different secondary structure

types and different residue positions in protein structures, which

are significantly distinct from the amino acids they encode.28

Taken together, these results suggest that synonymous codons

contain important information that is not represented by amino

acid sequences. Similar to codon usage, codon pair usage is also

biased,29 thereby influencing translation efficiency30 and fidelity.31

Recently, virus attenuation resulting from the alteration of codon

pair usage of poliovirus capsid protein without the change of codon

usage was reported.32 This indicates that codon pair usage could

carry information different from that carried by codon usage.

Physically interacting or functionally associated protein

pairs have been recently demonstrated to have similar codon

usage bias.33,34 Based on large-scale datasets, Najafabadi and

Salavati showed that codon frequency, as an indicator of coding

sequence co-evolution among interacting protein pairs,35 can be

effectively used to predict protein interactions (see Table S1, ESIw)
in a recent report.19 Inspired by their pioneering work, in this

study, we take a further step to investigate the ability of codon pair

usage to predict PPIs. Our analyses show that codon pair usage of

interacting protein pairs is also significantly different from that of

random protein pairs. We consequently build a codon pair

usage-based PPI prediction method termed as CCPPI (Codon

Combination-based Protein–Protein Interaction predictor)

under the Support Vector Machine (SVM) framework. We

show that the performance of CCPPI compares favorably with

several popular sequence-based encoding schemes through

extensive benchmark tests. We provide possible explanations

for why CCPPI can predict PPIs by comparing and analyzing

the predicted true positives resulting from different encoding

schemes. Moreover, we also discuss the applicability of CCPPI to

the prediction of the fruit fly (Drosophila melanogaster) inter-

actome. Our CCPPI approach, when integrated with traditional

prediction methods, is anticipated to be further useful for

improving the performance and coverage of PPI prediction.

Materials and methods

Sequence encoding schemes

Our analyses were mainly based on the yeast interactome

data, which were believed to be of relatively high coverage.36,37

We exploited features from protein sequences or gene coding

sequences. Protein sequences and the corresponding coding

sequences of yeast were downloaded from SGD database

(http://www.yeastgenome.org/). The difference in a feature19

between a pair of proteins can be simply calculated as:

d(x) = Z � |fi(x) � fi(x)| (1)

where fi(x) and fj(x) stand for the values of feature x of

proteins i and j, respectively. For codon pair frequencies,

f(x) is the total number of the codon pair x in the coding

sequence of a protein divided by the length of the protein. Z is

a scaling factor used to avoid a feature of small quantity,

which was set to 100. The frequencies of amino acids, amino

acid pairs and codons were calculated in the same manner.

A simple extension of the above f(x) is the inverted distance

weighting. To calculate the inverted distance weighted (IDW)

frequency of a codon pair x that is composed of two codons

p and q, we summed up the inverted linear distance between

the codons p and q. Then, f(x) was modified as:

f ðxÞ ¼ Z �

PmðxÞ

k¼1

1
dstðpqÞþ1

n
ð2Þ

where m(x) is the total number of codon pairs x, dst(pq) is

the linear distance between codons p and q in the corres-

ponding protein sequence; Z and n are the scaling factor and

protein length, respectively. For example, f(AAATTT) of

the sequence ‘‘AAACCCGGGAAATTT’’ is calculated as

100 � (1/4 + 1/1)/5 = 25. To simplify the calculation, codon

pairs with dst(pq) > 8 were disregarded. The IDW amino acid

pair frequencies were calculated in the same fashion.

Two previously published encoding schemes were compared

with our encoding scheme in this study. The first one is the

CT encoding20 where 20 amino acids were firstly classified into

seven classes according to their dipoles and volumes. Then the

total number of different tripeptides (triads) in a protein

sequence was counted. The numbers of tripeptides composed

of amino acids belonging to the same class, e.g. ADR

and VEK, were added up separately. Finally, a total of

7 � 7 � 7 = 343-dimensional features could be expected.

These features were then normalized as:

fnormalizedðxÞ ¼
f ðxÞ �minff ð1Þ; f ð2Þ; :::; f ð343Þg

maxff ð1Þ; f ð2Þ; :::; f ð343Þg ð3Þ

The second one is the AC encoding18 that considers the auto

covariance in terms of physicochemical properties between

two residues spaced with a certain number of residues in a pair

of proteins. See the original paper18 for details. It is worth

mentioning that the above two sequence encoding schemes

concatenated feature vectors for a pair of proteins, instead of

calculating the differences between them.

Yeast testing datasets

SVM predictors trained with codon pair frequency differences

and other encodings were extensively tested by 10-fold cross-

validation tests using three kinds of combined datasets of

4156 DIP positives and the equal number of non-interacting

protein pairs. The first kind of datasets that contains

randomly selected non-interacting protein pairs as negatives



1398 Mol. BioSyst., 2012, 8, 1396–1404 This journal is c The Royal Society of Chemistry 2012

are termed as ‘‘DIP+Random’’. The second kind (‘‘DIP+RSS

Negative’’) contains ‘‘RSS Negative’’ without known similar

functions or subcellular localizations. The index termed as RSS

value15 was proposed by Wu et al. to measure the similarity

between Gene Ontology annotations of two proteins. The Gene

Ontology38 annotations of yeast proteins were downloaded

from http://www.geneontology.org/ (version April 2011).

Since Gene Ontology contains three types of annotations,

i.e. Biological Process, Molecular Function and Cellular

Component, there are three RSS values for each pair of

proteins. An RSS value ranges from 0 to 1, with a higher

RSS value corresponding to a stronger association. Details for

calculating the RSS values can be found in the article.15 The

difference between our and Wu et al.’s methods is that the

latter excluded several Cellular Component annotations from

the calculation, while we did not. The ‘‘RSS Negative’’

datasets were randomly selected protein pairs whose RSS

(Biological Process) and RSS (Cellular Component) were

less than 0.4.17 With respect to the third kind of datasets

(‘‘DIP + Homogeneous’’), the negatives were generated by

randomly rewiring the DIP positives.20 For a more compre-

hensive benchmarking, all cross-validation tests were repeated

five times by randomly sampling different negative datasets.

We also tested CCPPI in the aforementioned three types of

datasets after removing redundant proteins by the CD-HIT

tool39 using a 40% protein sequence identity cutoff.

The large-scale independent benchmarking test was

performed as described below. All predictors were trained on

a joint dataset of DIP positives, MIPS complex positives

(available in the supporting materials of ref. 40) and the equal

number of randomly selected negative pairs. This training

dataset is called ‘‘DIP + MIPS + Random’’. The testing

dataset is composed of the BIOGRID interaction dataset36

and 0.9 million randomly selected non-interacting protein

pairs. The BIOGRID dataset was downloaded from the

BIOGRID database (http://thebiogrid.org) and only physical

interactions between yeast proteins were retained. In particular,

we filtered out all protein pairs in the testing dataset that

appeared in the training dataset. For the MIPS positives and

BIOGRID positives, interactions from ribosomal protein

complexes were discarded, which was suggested in ref. 19.

The training and testing datasets for this large-scale bench-

marking test are available at http://protein.cau.edu.cn/ccppi/

download.html.

It is noteworthy that proteins with less than 30 amino acids

were removed from all datasets, as requested by the AC

encoding.41 In addition, we also removed duplicated interactions

and self-interactions in all of the datasets used.

SVM implementation and performance assessment

SVM training, testing and 10-fold cross-validation experiments

were implemented using the LIBSVM package.42 All SVM

models were constructed with the radial basis function (RBF)

kernel. Unless otherwise stated, the parameter c was preliminarily

optimized to 10 and the other SVM parameters were set

to their default values. All the three encoding schemes

(i.e. CCPPI, CT encoding and AC encoding) perform better

with c = 10 than the default c.

Four performance measures based on the default SVM

cutoff value (i.e. zero) were introduced using the following

definitions:

accuracy ¼ TPþ TN

TPþ FPþ TNþ FN
ð4Þ

precision ¼ TP

TPþ FP
ð5Þ

sensitivity ¼ TP

TPþ FN
ð6Þ

MCC¼ TP�TN�FP�FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFPÞ� ðTPþFNÞ� ðTNþFPÞ� ðTNþFNÞ

p

ð7Þ

where TP, FP, TN, FN represent the number of true positives,

false positives, true negatives and false negatives, respectively.

MCC, the Matthew’s Correlation Coefficient, is a comprehensive

indicator of a predictor’s performance.

In order to evaluate the performance on the large-scale

benchmark dataset, the Receiver Operating Characteristic

(ROC) curves were generated by plotting the true positive

rate (i.e. sensitivity) as a function of the false positive rate

(i.e. 1-specificity). The specificity is defined as:

specificity ¼ TN

TNþ FP
ð8Þ

We manipulated the SVM cutoff value to change the

specificity level. The overall performance is thus quantified

by the Area Under Curve (AUC) value.

Results and discussion

Non-random codon pair frequency distribution among

interacting protein pairs

We compared codon pair frequency differences between

4380 interacting protein pairs from the DIP database37 and

randomly selected protein pairs which are 19-fold larger than

the former. In total, there are 61 � 61 = 3721 codon pairs

under investigation. Compared with randomly selected protein

pairs, 1551 out of 3721 codon pairs in the interacting protein

pairs were observed to have significantly similar frequencies

(Welch’s t-test followed by Benjamini–Hochberg correction,

p o 0.05; Fig. 1). At the same significance level, the frequencies

of 619 codon pairs in interacting protein pairs tend to be

dissimilar. Moreover, there is a considerable fraction (41.7%)

of codon pairs that do not have any significant difference. In

contrast, 57 out of 61 codons in the interacting protein pairs

show similar frequencies (p o 0.05; Fig. 1), which is consistent

with previous observations based on a different dataset.19

Although the potential amount of informative codon pairs

seemed to be large, it could be expected that non-random

usage of these codon pairs in PPIs was a result of non-random

codon usage and non-random amino acid pair usage. To test

this, we generated 1000 permutated sequence sets where

only the synonymous codons in each coding sequence were

shuffled. Therefore, the codon pair usage was altered but the

codon usage and amino acid pair usage remained unchanged



This journal is c The Royal Society of Chemistry 2012 Mol. BioSyst., 2012, 8, 1396–1404 1399

(see Methods, ESIw). Among at least 950 out of 1000 permutated

sets, there were 198 codon pairs still shown to be more similarly

used in PPIs in comparison with protein pairs with permutated

coding sequences and 85 codon pairs still shown to be dissimilarly

used in PPIs (i.e. empirical p o 0.05). These informative codon

pairs are more likely to be independent of codon usage and amino

acid pair usage, indicating that the non-random usage of codon

pairs is beyond the combination of non-random codon usage and

non-random amino acid pair usage. Therefore, a predictor based

on codon pair frequency differences may perform better in

distinguishing interacting protein pairs from random protein

pairs, which we will examine in the following sections.

CCPPI: codon pair usage as the encoding feature under the

SVM framework

For a pair of proteins, a feature vector consisting of

3721 codon pair frequency differences between them was

constructed. Considering that SVM is suitable for dealing with

such high dimensional feature vectors, we used the codon pair

frequency differences as the encoding scheme and developed an

SVM-based PPI predictor called CCPPI.

Based on ‘‘DIP + Random’’ datasets, we compared the

performance of CCPPI and the other sequence-based encoding

schemes through 10-fold cross-validation tests under the same

SVM framework, for a fair comparison of the performance of

CCPPI and other different encoding schemes. These encoding

schemes include amino acid frequency differences, amino acid

pair frequency differences and codon frequency differences.

The performances of these encoding schemes are summarized

in Table 1. It can be seen that codon-derived encodings

outperformed the corresponding amino acid-derived encodings.

That is to say, the codon frequency difference encoding

outperformed the amino acid frequency difference encoding

and CCPPI achieved a better performance than the amino acid

pair frequency difference encoding. Moreover, CCPPI also

significantly outperformed the codon frequency difference-based

encoding with approximately 8% accuracy increase under the

SVM framework (Table 1). We noted that the predictor based on

the codon frequency difference encoding had been initially

established under the Naı̈ve Bayes framework.19 This Naı̈ve

Bayes predictor could only reach an accuracy of 61.0 � 0.3%

(MCC= 0.222� 0.005) in the ‘‘DIP+Random’’ datasets using

10-fold cross-validation tests. Similarly, codon pair frequency

difference encoding under the Naı̈ve Bayes framework performed

worse (accuracy = 66.8 � 0.3%, MCC = 0.336 � 0.006) than

that under the SVM framework (Table 1), indicating that the

SVM framework would be a more favorable choice to construct

codon/codon pair information-based predictors. In summary,

these results suggest that codon pair usage is more informative

for PPI prediction.

Spaced amino acid pair information has been previously

shown to be useful for improving prediction accuracy.18

Therefore, inverted distance weighting (IDW) was introduced

to extend amino acid pair frequency or codon pair frequency

in a spaced pair encoding fashion. Indeed, such extensions

improved the prediction accuracy of amino acid pair frequency-

based predictors by 3% (achieving a level nearly comparable to

CCPPI), but did not lead to a better performance for codon pair-

based predictors (Table 1). Spaced amino acid pairs can reflect

patterns of local amino acid distribution throughout the protein

sequence18 and plausibly the residue context of the protein

interaction interface. In contrast, spaced codon pairs represented

in this form seem to lack straightforward biologically meaningful

information for PPI prediction. As a simple extension of

codon pairs that accounts for more distal neighboring codons,

the major advantage of IDW is that it does not generate higher

dimensional feature vectors. On the other hand, IDW cannot

Fig. 1 Comparison of codon frequency differences and codon

pair frequency differences between the PPIs and random ones. The

columns indicate the total numbers of codons or codon pairs whose

frequencies are shown to be either significantly more similar or

dissimilar between interacting protein pairs in comparison with randomly

selected non-interacting ones. In other words, a corrected p-value was

calculated for each codon or codon pair to describe whether it was

informative in discriminating interacting protein pairs and non-interacting

protein pairs. The x axis lists the corrected p-value cutoff under which one

codon/codon pair was treated as significantly similarly or dissimilarly used

in PPIs, while the y axis shows the total number of codons or codon pairs

that meets each individual cutoff.

Table 1 Performance of different sequence encoding schemes evaluated by 10-fold cross-validation tests

Encoding scheme Accuracy (%) Precision (%) Sensitivity (%) MCC

Amino acid frequency difference 60.6 � 0.5 61.1 � 0.5 58.1 � 0.9 0.211 � 0.011
Amino acid pair frequency difference 70.3 � 0.4 68.7 � 0.5 74.4 � 0.7 0.407 � 0.008
Codon frequency difference 66.4 � 0.5 65.8 � 0.4 68.3 � 0.9 0.329 � 0.010
Codon pair frequency difference (CCPPI) 74.8 � 0.4 73.3 � 0.5 78.1 � 0.5 0.498 � 0.008
IDW amino acid pair frequency difference 73.3 � 0.3 74.5 � 0.3 70.9 � 0.4 0.466 � 0.007
IDW codon pair frequency difference 74.3 � 0.4 73.3 � 0.2 76.6 � 0.9 0.488 � 0.008
CT encoding 68.6 � 0.7 68.0 � 0.7 70.3 � 0.7 0.372 � 0.013
AC encoding 63.3 � 0.5 62.4 � 0.4 66.7 � 1.3 0.266 � 0.010

All the 10-fold cross-validation tests were repeated five times by selecting different negative samples. The results are expressed as mean � standard

deviation. The predictors were trained with the preliminarily optimized parameters.
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completely represent the information of spaced codon pairs,

due to its arbitrary weighting scheme. This suggests that more

sophisticated extensions of codon pair frequencies are desirable.

Comparison of the performance of CCPPI with other encoding

schemes

We further compared CCPPI with another two popular

encoding schemes that were frequently cited in the literature,

namely the CT20 and AC18 encoding schemes. Both encodings

were implemented using the SVM-based predictors (Table S1,

ESIw). We first evaluated the prediction performance of

these two encoding schemes (not the methods) by 10-fold

cross-validation tests on the aforementioned ‘‘DIP+Random’’

datasets. As shown in Table 1, the accuracies for these two

encodings are about 5–10% lower compared with CCPPI. The

corresponding MCC values of these two encodings were 0.12

and 0.23 lower than CCPPI, respectively.

It should be noted that cross-validation tests on such

balanced datasets often overestimate the performance of PPI

predictors. This is due to the nature of the extreme unbalance

between interacting protein pairs and non-interacting protein

pairs.43 Therefore, we further examined the performance of

CCPPI and the other two encoding schemes on a large-scale

benchmark dataset. As an addition to the training dataset for

all three encodings, the MIPS protein complex dataset was

introduced for a more sufficient training (resulting in the

‘‘DIP + MIPS + Random’’ dataset). CCPPI predictor trained

on this dataset is accessible at http://protein.cau.edu.cn/ccppi/.

The benchmark testing dataset combines 48 993 positive protein

pairs from the BIOGRID database36 and 0.9 million randomly

selected negative protein pairs, reaching a high positive-to-

negative ratio of 1 : 18.

The performance of CCPPI and the other two encoding

schemes on the benchmark dataset was characterized by ROC

curves, as shown in Fig. 2. CCPPI achieved an AUC value of

0.695, outperforming CT and AC encoding schemes (0.616 and

0.577). More importantly, at the 90% specificity level, CCPPI

correctly predicted 14 634 interactions from the BIOGRID

dataset, while CT and AC encodings predicted 10 652 and

7294 interactions, respectively. The prediction consistency

among the different encoding schemes was illustrated using

the Venn diagrams (Fig. 3). The predicted true positives by

the three predictors at the 90% specificity level show moderate

overlap only, which indicates the potentiality of being

integrated as a more powerful predictor, irrespective of

computational burdens. In other words, a meta or consensus

approach44 can potentially be developed to make a better

prediction by integrating the prediction results of all three

encoding schemes. Besides, we also retrained other encodings

presented in Table 1 in the same way to test them on this

large-scale benchmark dataset. Codon pair-based encodings

also performed the best, and CCPPI performed especially well

at the specificity levels higher than 90% (Fig. S1, ESIw).
We noted that above performance of these sequence encodings

was estimated using preliminarily optimized SVM parameters. To

confirm our finding, we also performed parameter optimization

through 10-fold cross-validation tests on a ‘‘DIP + Random’’

dataset (see Table S2, ESIw, for the listed optimized parameters).

All encodings were re-trained using the optimized parameters

and the ‘‘DIP + MIPS + Random’’ dataset. As indicated by

the repeated large-scale testing, CT encoding and AC encoding

showed significant improvement after parameter optimization,

but CCPPI performed slightly worse than those based on the

preliminarily optimized parameters, possibly due to the over-

fitting induced by optimization (Fig. S2, ESIw). Nonetheless,

CCPPI still ranked the best in terms of the AUC value, with a

comparable performance to the CT encoding. In addition, at

least 25% of the true positives yielded from CCPPI at the 90%

specificity level were predicted by neither of the other two

encodings at the same specificity level (Fig. S3, ESIw). Indeed,
a simple meta-predictor constructed by weighted summing of

the decision values from the three encodings-based predictors

could outperform any individual predictor (Fig. S2, ESIw).

Fig. 2 The ROC curves illustrating the overall performance of the

CCPPI and the other two encoding schemes by using the large-scale

testing dataset composed of the BIOGRID positives and 0.9 million

randomly selected negatives. The predictors were trained with the

preliminarily optimized parameters.

Fig. 3 Venn diagram showing the overlap of the predicted true

positives by CCPPI and the other two encoding schemes at the 90%

specificity level in the large-scale testing. The predictors were trained

with the preliminarily optimized parameters.
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Why CCPPI is more informative than the other encoding

schemes in predicting PPIs?

To better understand why CCPPI performed better than the other

two commonly used sequence encodings for PPI prediction, we

elaborated on the exclusively predicted true positives (i.e. predicted

true positives that could not be predicted by any other individual

encoding at the 90% specificity level) by the three encodings.

In particular, we interrogated four important factors that

are presumably associated with protein–protein interactions,

including (1) transcriptional co-expression, (2) proteomic

co-expression, (3) functional similarity and (4) subcellular

localization similarity (see Methods, ESIw for details).

As shown in Table 2, exclusively predicted true positives of

CCPPI seemed to be enriched for transcriptional co-expressed

proteins (Fisher’s exact test, p o 0.05). We checked if such

co-expression protein pairs were indeed overrepresented in

predicted true positives of CCPPI in comparison with the

whole BIOGRID dataset. It turned out that transcriptional

co-expressed protein pairs were underrepresented for the other

two encodings, rather than the overrepresentation for CCPPI

(Table 2).

Unexpectedly, the difference in proteomic co-expression

seemed ambiguous (i.e. CCPPI vs. AC encoding Fisher’s exact

test, po 0.05, but CCPPI vs. CT encoding, p> 0.05; Table 2).

In addition to the data quality, there are at least two other

possible explanations for this. Firstly, the control mechanisms

of protein expression are so complicated that the contribution of

codon pair usage to proteomic co-expression is not pronounced.

Secondly, both amino acid usage and codon pair usage contribute

to proteomic co-expression and it is thus reasonable that no

significant difference in their association with co-expression could

be observed. We found that the predicted true positive protein

pairs by both CCPPI and CT encodings at the 90% specificity

level tend to be co-expressed at the proteomic level, in contrast to

the whole BIOGRID dataset (Welch’s t-test, p o 0.05; Table 2).

This finding is also consistent with a recent observation that both

codon usage and amino acid usage play important roles as

determinants affecting protein abundance and translation.45

Therefore, the second explanation seems to be more convincing.

It has been proposed that similar usage of codon could help

‘‘synchronizing the translation of functionally associated

protein pairs’’ (including but not limited to PPIs) across

various eukaryotes.35 We argue that codon pair usage may

play a similar role in mediating correlated protein expression

among PPIs.

We also tested the RSS values that reflect the functional or

subcellular localization similarity between interacting protein

pairs. Interestingly, exclusively predicted true positives by

CCPPI showed significantly higher similarity than those of

the other two encodings in terms of protein function (Welch’s

t-test, p o 1 � 10�3; Table 2) but not subcellular localization

(p > 0.05, Table 2). Conversely, CCPPI performed especially

well on the datasets where such a factor is more discernable, as

discussed below.

Performance comparison based on different datasets

It has been previously suggested that the objective evaluation

of PPI predictors should be ideally performed on multiple

datasets with negatives generated in different ways,17,18

because gold standard datasets of bona fide non-interactions

are still under development.46 From this perspective, RSS

Negative, a type of negative datasets other than randomly

selected ones, collected protein pairs without any known

significant similarity of function or subcellular localization.

On the ‘‘DIP + RSS Negative’’ datasets, CCPPI achieved

accuracy as high as 90.2%, still outperforming the other two

encoding schemes (Table S3, ESIw). This indicates that CCPPI
captured important information contained in the subcellular

localization, and especially functional similarity of interacting

protein pairs.

Despite the above encouraging results, it is likely that there

are cases where CCPPI and other predictors will perform

poorly.18 To explore this possibility, we tested these encodings

on the ‘‘DIP + Homogeneous’’ datasets (see Materials and

Methods for details). These datasets are more challenging in a

sense that the protein repertories of positive protein pairs and

negative pairs become somewhat homogenous, making it

more difficult to differentiate between each other. As shown

in Table S4 (ESIw), all of the encoding schemes including

CCPPI were subjected to performance decline when evaluated

by 10-fold cross-validation tests on these datasets. But CCPPI

still achieved the highest accuracy and MCC value, indicating

that it is more robust in dealing with this situation compared

with the other two encoding schemes.

Table 2 Comparison of four different factors that presumably contribute to the true positive prediction of each encoding scheme

Encoding scheme Transcriptional co-expression Proteomic co-expression Functional similarity Subcellular localization similarity

(a) Factors of exclusively predicted true positives at the 90% specificity
CCPPI 0.034 0.145 0.689 0.902
CT encoding 0.022 0.139 0.640 0.889
AC encoding 0.021 0.086 0.666 0.900
(b) Factors of all predicted true positives at the 90% specificity
CCPPI 0.028 0.152 0.681 0.904
CT encoding 0.023 0.138 0.663 0.900
AC encoding 0.020 0.097 0.678 0.906

(c) Factors of the whole BIOGRID dataset
BIOGRID 0.026 0.112 0.671 0.902

Transcriptional co-expression and proteomic co-expression of protein pairs were measured by the fraction of co-expressed proteins. The functional

similarity and subcellular localization similarity were measured by RSS values which range from 0 to 1. (a) A factor of CT or AC encoding is

shown in italic if it is significantly lower (po 0.05) than that of CCPPI. (b) A factor is highlighted in bold if it is significantly larger (po 0.05) than

the average level of the BIOGRID dataset, which is presented in the part c of this table.



1402 Mol. BioSyst., 2012, 8, 1396–1404 This journal is c The Royal Society of Chemistry 2012

Although CCPPI was ranked the best when tested on

any type of the negative datasets, the resulting accuracies

diverged considerably. RSS Negative is a good type of negative

datasets as it has the least overlap with bona fide interactions.

However, it is also biased towards specific negative protein pairs

whose function and subcellular localization are dissimilar. There-

fore, benchmarking on this type of datasets may result in an

overestimated performance, especially for a predictor that is

sensitive to functional similarity like CCPPI or AC encoding.

By excluding the proteins out of the positive datasets, the

homogenous negative datasets can serve as rigorous benchmarks.

As a consequence, however, only a limited fraction of the

proteome (i.e. proteins that present in PPI datasets) can be

examined. In this study, as a compromise, the randomly selected

negatives, which are neither of the highest quality nor strict

enough by themselves, were ultimately chosen for benchmarking

purposes, due to their neutral bias and relative high coverage.

We noted that in addition to the selection of negative

datasets, the presence of similar proteins may also result in a

performance overestimation. We have repeatedly performed

cross-validation tests using the aforementioned three types of

datasets after removing redundant sequences (at 40% sequence

identity cutoff). CCPPI showed 0.6–1.6% decline of accuracy

among different types of datasets after such a filtering procedure

(Table 3), indicating that sequence similarity is not a major factor

that contributes to CCPPI’s performance. Similarly, filtering

redundant sequences did not alter the conclusion of the statistical

analyses about codon/codon pair usage (Fig. S4, ESIw).
However, we also found that the true positive prediction of

CCPPI at the 90% specificity in the large-scale testing was

enriched for interactions between paralogous protein pairs

(sequence identity >40%), in comparison with the whole

BIOGRID dataset (0.64% vs. 0.33%, Fisher’s exact test,

p o 0.05). To alleviate this bias, we have made available

an optional post-filter to exclude paralogous protein pairs

(sequence identity >40%) in our CCPPI prediction server.

Reasonable strategies to construct more powerful PPI predictors

From a more realistic point of view, due to the particularly low

ratios between interacting and non-interacting protein pairs,

CCPPI is expected to yield many more false positives than true

positives even at the 90% specificity level. The presence of high

false positive rate is reflected not only by the poor performance

on testing datasets aimed at distinguishing interactions

from non-interactions within the same group of proteins

(Table S4, ESIw), but also by the poorer performance when

tested on a false positive-prone dataset.47 This has necessitated

the integration of CCPPI with other PPI predictors.

Prediction methods like interolog, domain–domain interaction

and phylogenetic profile could only predict protein interactions

with known homologs or domains. In this context, integrating

CCPPI with these methods is likely to achieve a better balance

between the prediction coverage and false positive rate. This is

exemplified by the PPIs in the fruit fly interactome. In this

particular dataset,48 there are 26 545 known interactions, out

of which the interolog method predicted 985 interactions by

transferring PPIs from yeast, worm (Caenorhabditis elegans),

mouse and human orthologs. CCPPI trained on the ‘‘DIP +

MIPS + Random’’ dataset was performed on the known fly

interactions with a cutoff value of 0.39, which was estimated to

have a 90% specificity according to the benchmarking on the

large-scale yeast dataset. As a result, 4146 interactions were

predicted by CCPPI. We estimated the specificity of each

predictor using 150 000 randomly selected non-interacting

fruit fly protein pairs. The interolog method showed fairly

high specificity (99.9%), which is much higher than CCPPI

(92.2%). Nonetheless, only 219 PPIs were predicted by both

methods, indicating limited overlap of the two methods.

766 PPIs were predicted by the interolog method but not by

CCPPI, presumably due to lack of correlation in codon pair

usage in comparison with the 219 PPIs that could be predicted

by both methods (Pearson’s correlation coefficient, 0.13 vs.

0.21, p o 1 � 10�15). In contrast, there were 3927 PPIs that

could only be predicted by CCPPI, which could be grouped

into two categories. In the first category, the interolog method

failed to predict 1177 interactions due to the limited availability of

interaction data in other species.36,37,49 That means, although

orthologous protein pairs from other organisms could be identified,

there was no experimental evidence showing that these protein

pairs truly interact, and thus no interaction information could

be transferred. In the second category, 1574 interactions

did not have any convincible orthologs in other organisms.

Therefore, they could not be predicted by the interolog

method even if more PPI data of other species became

available. In addition, we also compared CCPPI with another

two homology-dependent methods, namely the domain–

domain interaction8,10 and phylogenetic profile methods12

(see Methods for details, ESIw). As it can be seen in Table S5

(ESIw) and Fig. 4, CCPPI showed a limited overlap with other

methods, though it had a higher false positive rate.

A typical example is related to the PPI prediction of

FBgn0032789. According to the FlyBase annotations,50

FBgn0032789 is an essential protein, which has no identifiable

homolog from species other than fly species in theDrosophila genus.

Therefore, all of the 31 PPIs that were involved in the current fruit

fly interactome could not be discovered by the homology-dependent

methods. However, CCPPI could correctly predict 15 PPIs

Table 3 Performance of CCPPI after filtering redundant sequences in the datasets

Datasets Accuracy (%) Precision (%) Sensitivity (%) MCC

DIP + Random 73.2 � 0.3 71.3 � 0.8 77.6 � 1.0 0.466 � 0.006
DIP + RSS Negative 89.6 � 0.4 88.1 � 0.6 91.7 � 0.1 0.793 � 0.008
DIP + Homogeneous 62.5 � 0.3 64.4 � 0.7 55.6 � 1.3 0.253 � 0.007

We removed redundant sequences using a 40% identity cutoff, which resulted in datasets containing 3460 interacting protein pairs and 3460

randomly selected non-interacting protein pairs. The performance was evaluated through the 10-fold cross-validation tests, which were repeated

five times by selecting different negative samples. The results are expressed as mean � standard deviation.
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it participates in, where mutations of four important partner

proteins will induce severe growth or reproductive defects

(FBgn0033988, FBgn0039385, FBgn0034523 and FBgn0030583).

Interestingly, the latter three were proteins with unknown

function. That is to say, CCPPI has identified essential PPIs

where uncharacterized proteins were involved with relatively

high decision values. These results illustrate the potential value of

applying simple sequence encoding-based methods to identify novel

interactions involving uncharacterized proteins or non-conserved

proteins. We also observed a limited overlap of the predicted true

positives between homology-dependent methods and the CT or AC

encoding which was trained on the ‘‘DIP + MIPS + Random’’

dataset (Fig. S5 and S6, ESIw). This indicates the ability and

potential of simple sequence encoding-based predictors to

explore a unique niche in the interactome.

Conclusions

Our studies indicate that codon pair usage encodes additional

important information that can be used to predict functionally or

physically related protein partners. The developed codon pair

based method CCPPI is capable of predicting protein–protein

interactions, with a favorable or at least competitive performance

in comparison with several well-known sequence-based encoding

schemes. We would also like to point out that, like many of the

existing PPI predictors, CCPPI suffers from a high false positive

rate. CCPPI could partially extract information regarding the

proteomic co-expression and functional similarity of interacting

protein pairs, which is distinct from homology and difficult to be

obtained by high-throughput experiments. We therefore propose

that integration of CCPPI with other effective and complementary

methods that are developed based on protein homology, such as

the interolog approach, may be further helpful for enhancing the

performance, coverage and reliability of PPI predictions.
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