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Profile–profile  alignment  algorithms  have  proven  powerful  for recognizing  remote  homologs  and  gen-
erating alignments  by  effectively  integrating  sequence  evolutionary  information  into  scoring  functions.
In comparison  to scoring  function,  the  development  of gap  penalty  functions  has  rarely  been  addressed
in  profile–profile  alignment  algorithms.  Although  indel  frequency  profiles  have  been  used  to  construct
profile-based  variable  gap penalties  in  some  profile–profile  alignment  algorithms,  there  is  still  no  fair
comparison  between  variable  gap  penalties  and  traditional  linear  gap  penalties  to quantify  the  improve-
ment  of alignment  accuracy.  We  compared  two linear  gap  penalty  functions,  the  traditional  affine  gap
penalty  (AGP)  and  the bilinear  gap  penalty  (BGP),  with  two  profile-based  variable  gap  penalty  functions,
the  Profile-based  Gap  Penalty  used  in SP5 (SPGP)  and  a  new  Weighted  Profile-based  Gap  Penalty  (WPGP)
developed  by  us,  on  some  well-established  benchmark  datasets.  Our  results  show  that  profile-based
variable  gap  penalties  get  limited  improvements  than  linear  gap  penalties,  whether  incorporated  with
secondary  structure  information  or  not. Secondary  structure  information  appears  less powerful  to  be

incorporated  into  gap  penalties  than  into  scoring  functions.  Analysis  of gap  length  distributions  indicates
that  gap  penalties  could  stably  maintain  corresponding  distributions  of  gap  lengths  in  their  alignments,
but  the  distribution  difference  from  reference  alignments  does  not  reflect  the  performance  of  gap  penal-
ties. There  is  useful  information  in  indel  frequency  profiles,  but it is still  not  good  enough  for  improving
alignment  accuracy  when  used  in profile-based  variable  gap  penalties.  All  of  the  methods  tested  in  this
work  are  freely  accessible  at http://protein.cau.edu.cn/gppat/.
. Introduction

Profile–profile alignment algorithms are powerful tools for sen-
itively detecting protein remote homology relationships with
mproved alignment accuracy (Ohlson et al., 2004). Traditional
rotein sequence alignment methods use substitution matrices to
easure the similarity of amino acid pairs, while profile–profile

lignment methods require a profile-based scoring function to
easure the similarity of profile vector pairs. Both types of align-
ent methods employ gap penalty functions. Many different
rofile–profile alignment scoring functions have been developed
nd evaluated, yielding significant improvements for both align-
ent accuracy and fold recognition (Edgar and Sjolander, 2004;
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Ohlson et al., 2004; Wang and Dunbrack, 2004). Some of these
scoring functions are integrated with structural information, such
as secondary structure, solvent accessibility, backbone dihedral
torsion angles, hydrophobic indices, and structural profiles of tem-
plates, either predicted from the query sequence or obtained from
the template structure. With the integration of structural informa-
tion, profile–profile alignment has become a powerful approach
for recognizing distant homologs and providing high-quality align-
ments for the prediction of protein structures as a single method
(not meta-server), e.g., the SPARKS and SP series developed by Zhou
and co-workers (Liu et al., 2007; Zhang et al., 2008; Zhou and Zhou,
2004, 2005a,b) and MUSTER by Wu and Zhang (2008).

However, since the sequence comparison algorithms [e.g.,
Needleman–Wunsch (Needleman and Wunsch, 1970) and
Smith–Waterman (Smith and Waterman, 1981)] were pro-
posed, gap penalty functions have much fewer developments
in both information integration and performance improvement

for alignment accuracy than scoring functions. The most widely
used gap penalty function is the affine gap penalty (AGP), which
defines the basic linear form of a gap penalty function. For a given
combination of a scoring method and a linear gap penalty function,
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he gap penalty parameters remain fixed in aligning different
esidue positions. Thus, the AGP has the advantage of simplicity
nd easy use in dynamic programming.

There are a few strategies that have been proposed for under-
tanding gap distributions and developing new gap penalty models.
n the past two decades, several groups have attempted to find the
istribution of indel lengths for a better gap penalty form (Gu and
i, 1995; Qian and Goldstein, 2001) or to empirically estimate the
arameters for AGP (Benner et al., 1993; Chang and Benner, 2004;
eese and Pearson, 2002). Although there is not yet a consensus on
he distribution of indel lengths to determine the optimal form of
ap penalty, a few gap models have been proposed for improv-
ng the pair-wise alignment quality, including a non-local gap
enalty (Taylor, 1996), generalized affine gap costs (Altschul, 1998;
achariah et al., 2005), a “long indel” model (Miklos et al., 2004),
nd a logarithmic affine gap penalty (Cartwright, 2006, 2007).

Adding information derived from local structures or structure
lignments to gap penalty functions has been considered to make
ap placements more suitable for local sequence environments. The
dea of using secondary structure information was first proposed
y Lesk et al. (1986) as a variable gap penalty according to differ-
nt secondary structures around the gap occurring positions. There
ere also several attempts to integrate statistical results from

tructurally aligned protein pair databases (Goonesekere and Lee,
004; Qiu and Elber, 2006; Wrabl and Grishin, 2004). Other meth-
ds which combine environmental information into gap penalty
unctions include the structure-dependent gap penalty used in
UGUE (Shi et al., 2001), and the variable gap penalty scheme pro-
osed by Madhusudhan et al. (2006).

The importance of variable gap penalties in protein sequence
lignment has been demonstrated by recent progress in sequence
lignment and structure prediction (Dunbrack, 2006). Profile-based
ariable gap penalties acquire gap information from profiles or mul-
iple sequence alignments (MSAs) generated by PSI-BLAST search.
he gap information is usually used in the form of indel fre-
uency profiles, which is more specific for the sequences to be
ligned. This kind of gap penalty schemes was previously adopted
y some multiple sequence alignment programs, such as ClustalW
Thompson et al., 1994) and MAFFT (Katoh et al., 2002). At the
th Annual International Conference on Computational Systems
ioinformatics (CSB2007), Ellrott et al. (2007) observed that using

ndel frequency arrays derived from PSI-BLAST MSAs could improve
he alignment accuracy, especially for proteins with low sequence
dentity. The HHpred server (Soding et al., 2005) used the indel fre-
uency profiles as four probabilities (insert open/extend and delete
pen/extend), which were converted into a position-specific gap
enalty function. This idea was also employed by the SP5 method in

 different gap penalty function incorporated with the restriction of
econdary structure types, although only a minor increase in align-
ent accuracy was achieved (Zhang et al., 2008). These above trials

uggest that profile-based gap penalties could be used in a num-
er of ways and could result in various performances of alignment
ccuracy.

In addition to the AGP, most of the gap models described above
ere published but have scarcely been used again by others, due

o the difficulties in implementation and limited improvement in
lignment quality. Until now, there has been no critical comparison
etween variable and traditional gap penalties.

In the present work, we integrated four different gap penalty
odels with several profile–profile scoring functions to compare

hem with each other. Two of the gap penalty models were lin-
ar gap penalties, the AGP and the bilinear gap penalty (BGP)

Goonesekere and Lee, 2004). The other two were profile-based
ariable gap penalties, the Profile-based Gap Penalty used in SP5

SPGP) (Zhang et al., 2008) and a new Weighted Profile-based vari-
ble Gap Penalty (WPGP) developed by us. We  employed three
nd Chemistry 35 (2011) 308–318 309

profile–profile scoring functions, Pearson’s correlation coefficient
(pcc), prob score (Mittelman et al., 2003) and prof sim (Yona and
Levitt, 2002) to measure profile vector similarities. The BLOSUM62
(b62) scoring matrix (Henikoff and Henikoff, 1992), a non-profile
scoring function, was also used for comparison. Furthermore, we
also compared the performances of these gap penalties with and
without the secondary structure restriction (SSR).

In total, 32 different method combinations were intensively
assessed in this work. For each method combination, we first opti-
mized its parameters on a small training set, a selected version of
PREFAB 4.0 (Edgar, 2004), and then tested the method with these
trained parameters on several established benchmarks of different
sizes [i.e., Prosup (Domingues et al., 2000), SALIGN (Marti-Renom
et al., 2004) and SABmark 1.65 (Van Walle et al., 2005)]. The primary
goals of this work are to determine the quantitative differences of
alignment accuracy between profile-based variable gap penalties
and linear gap penalties; and to establish whether there is use-
ful gap information in profiles that could be used to improve the
alignment of protein sequences.

2. Methods

2.1. Linear gap penalties

The AGP is composed of two parts: the gap opening penalty g0
for inserting a gap and the gap extension penalty g1 for extending
each position of the gap. For a gap of length k, the penalty can be
represented as

g(k) = g0 + g1k (1)

The BGP was suggested by Goonesekere and Lee (2004) based on the
analysis of gap frequencies observed in several structurally aligned
protein databases. According to the observed bilinear behavior, the
BGP was  defined as follows:

g(k) =
{

g0 + g1k (k ≤ 3)

g0 + 3g1 + g2(k − 3) (k > 3)
(2)

where g1 and g2 are the extension penalties for k ≤ 3 and k > 3,
respectively.

2.2. Profile-based variable gap penalties

The profile-based variable gap penalties that we  propose here
are based on the statistical indel frequency profiles from the MSAs
generated by PSI-BLAST search. The indel frequency profiles were
calculated as below, which is slightly different from the work of
Ellrott et al. (2007) and SP5 (Zhang et al., 2008). For each residue
position i in a sequence, there are two frequencies Pi

insert
and Pi

delete
,

which represent the probabilities of being inserted by a gap and
being deleted at this position, respectively. At the corresponding
position i in the MSA  generated by PSI-BLAST search, Pi

delete
is the

number of sequences with a gap aligned at this position divided by
the total number of sequences in the MSA. Pi

insert
is the number of

residues in the inserted gap block divided by the product of the gap
length and the number of sequences in the MSA (Fig. 1). We  counted
every residue in the gap block but not the inserted fragments
(Ellrott et al., 2007; Zhang et al., 2008) because we considered frag-

ments of different lengths to have different probabilities of being
inserted at the position. As described above, for sequences a and b
to be aligned, there are four indel frequency profiles: Pa,i

insert
, Pa,i

delete
,

Pb,j
insert

and Pb,j
delete

.
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Fig. 1. Calculation of Pinsert and Pdelete . This is an example showing the calculation

One of the profile-based variable gap penalties implemented in
his work was SPGP (Zhang et al., 2008). Our calculation of SPGP
as the same as in the original paper:

(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g0 +
n+k−1∑

j=n

g1

[
1 − (Pa,i

insert
)
� + (Pb,j

delete
)
�

2

]

g0 +
m+k−1∑

i=m

g1

[
1 − (Pb,j

insert
)
� + (Pa,i

delete
)
�

2

] (3)

here � = 0.1 according to Zhang et al. Using the upper formula in
q. (3),  for a k-length gap inserted before position i in sequence a
ith k residues (from position n to n + k − 1) aligned to this gap in

equence b, the gap penalty g(k) is the opening penalty g0 plus the
um of the extension penalties for each position j (n to n + k − 1) of
he k residues in sequence b. Similarly, the lower formula in Eq. (3)
s used for the opposite situation, wherein there is a gap of length k
nserted before position j in sequence b with k residues (positions

 to m + k − 1) aligned to this gap in sequence a.
In this work, we tried a new application of indel frequency pro-

les as another profile-based variable gap penalty called WPGP,
hich uses the indel frequency profiles not only in the extension
enalty but also in the opening penalty. In WPGP, we  further inte-
rated a modified sequence weighting scheme (see Section 2.4)  into
ounting the indel frequencies. The WPGP was calculated as below:

(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(g0 + g1)

[
1 − Pa,i

insert
+ Pb,n

delete

2

]
+

n+k−1∑
j=n+1

g1(1 − Pb,j
delete

)

(g0 + g1)

[
1 − Pb,j

insert
+ Pa,m

delete

2

]
+

m+k−1∑
i=m+1

g1(1 − Pa,i
delete

)

(4)

here the penalty for opening the first gap position (n of sequence

 for the upper formula or m of sequence a for the lower formula)
s the average of the corresponding non-insert and non-delete fre-
uencies multiplied by the sum of the origin opening and extension
enalties g0 and g1, and the penalty for every other gap exten-
ert of position i and Pdelete of position j in the query sequence (see text for details).

sion position (n + 1 to n + k − 1 in sequence b or m + 1 to m + k − 1
in sequence a) is the origin extension penalty g1 times the non-
delete frequency of that position. The upper and lower formulae
are used for different gap situations, as in SPGP.

2.3. Predicted secondary structures and SSR

Here, we  used the same scheme of SSR as those in the SP-series
and MUSTER algorithms (Liu et al., 2007; Wu  and Zhang, 2008;
Zhang et al., 2008; Zhou and Zhou, 2005a,b), in which no gaps are
allowed if the secondary structure types of the current aligning
position are both �-helix or both �-sheet. The secondary structure
types for both sequences were predicted by PSIPRED (Jones, 1999)
with all defaults against the same nrdb90 (Holm and Sander, 1998)
database, which is described in the next paragraph.

2.4. PSI-BLAST profiles and sequence weights

For both profile–profile scoring functions and profile-based
variable gap penalties, profiles and MSAs were constructed sep-
arately by five iterations of PSI-BLAST (version 2.2.17) (Altschul
et al., 1997) searches with an E-value cutoff of 0.001. We  chose
to perform those searches against nrdb90 from EBI (Holm and
Sander, 1998) due to its light size and fast speed. As in the work
of Ohlson et al. (2004),  the Position-Specific Substitution Matri-
ces (PSSMs) directly obtained from PSI-BLAST searches were used
to back-calculate the frequency profiles for the scoring functions.
We directly counted the raw indel frequency profiles for SPGP, and
all sequences in the MSAs were weighted equally. For WPGP, we
reversed the weighting scheme in MUSTER (Wu and Zhang, 2008)
to construct weighted MSAs and gap profiles from raw PSI-BLAST

outputs. Sequence weights ranged from 1.0 to 0.5. Higher weights
were given to sequences of higher E-values in order to amplify
the effects of distantly related sequences on calculating the indel
frequency profiles.
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.5. Scoring functions

We combined four different scoring functions with the afore-
entioned four gap penalties. They are b62, pcc, prob score and

rof sim, which are briefly described below.

.5.1. b62
The b62 scoring function is the only non-profile-based scoring

unction used in this study. The similarity score of the residue pair
o be aligned is directly obtained from the BLOSUM62 matrix:

b62(i, j) = BLOSUM62(ai, bj) (5)

here i and j are the positions of residues to be aligned in sequence
 and b, and ai and bj are the corresponding residues, respectively.

.5.2. pcc
The pcc scoring function has been previously reported and

ielded a good performance on profile–profile alignment accuracy
Mittelman et al., 2003; Pietrokovski, 1996; Tomii and Akiyama,
004; Wang and Dunbrack, 2004). Given the profile vectors ai at
osition i of sequence a and bj at position j of sequence b, the
imilarity score of pcc is

pcc(i, j) =
∑20

x=1(aix − āi)(bjx − b̄j)√∑20
x=1(aix − āi)

2∑20
x=1(bjx − b̄j)

2
(6)

here x is one of the 20 amino acid types, and āi and b̄j are the
verage values of the vectors. The pcc scores range from −1 to 1. A
arge pcc score indicates the two profile vectors have similar amino
cid substitution tendencies.

.5.3. prob score
The name “prob score” was used in Ohlson et al.’s (2004)

tudy of profile–profile alignment methods. The original method
s PICASSO, introduced by Heger and Holm (2001, 2003) for com-
aring protein family profiles. Mittelman et al. (2003) modified this
ethod into several variants. The one we chose here is PICASSO3Q,
hich uses only the target frequencies Qi and Qj from columns ai

nd bj at positions i and j of the profiles in a symmetrical equation:

prob score(i, j) =
20∑

x=1

Qix ln
Qjx

px
+

20∑
x=1

Qjx ln
Qix

px
(7)

here px is the background frequency of amino acid x in the
atabase.

.5.4. prof sim
The prof sim scoring method combines a divergence score and

 significance score, which are calculated into a single score with
he Kullback–Leibler (KL) and Jensen–Shannon (JS) divergences to

easure profile similarity (Yona and Levitt, 2002). Given the target
requencies Qi, Qj and their average target frequency Q0 for each
ype of amino acid x, the divergence score is computed as:

 = 1
2

[
20∑

x=1

Qix log2
Qix

Q0x
+

20∑
x=1

Qjx log2
Qjx

Q0x

]
(8)

nd the significance score is calculated as:

1
[

20∑ Q0x
20∑ px

]

 =

2
x=1

Q0x log2 R0x
+

x=1

px log2 R0x
(9)

here R0x is the average of Q0x and the background frequency px of
mino acid x.
nd Chemistry 35 (2011) 308–318 311

The divergence score and the significance score are combined
to produce the final similarity score:

Sprof sim(i, j) = 1
2

(1 − D)(1 + S) (10)

2.6. Dynamic programming

We  used the Needleman–Wunsch algorithm (Needleman and
Wunsch, 1970), implemented by an in-house Perl script, to gener-
ate the optimal global alignment of the two sequences a and b. A
shift value c was  introduced to every similarity score of each scoring
method, which was  further trained together with the gap penalty
parameters. Additionally, the terminal gaps of the alignments were
not penalized by any gap penalty function.

2.7. Alignment accuracy

There are several indices available to measure the alignment
accuracy by comparing the test alignments with the reference
structure alignments. One index frequently used is the Qdeveloper
score (Qd), which is the number of correctly aligned residue pairs
(Nc) normalized by the number of all the residue pairs aligned in
the reference alignment. The Qmodeler score (Qm) is Nc divided by
the number of all pairs aligned in the test alignment. Generally,
Qd measures the sensitivity and Qm measures the specificity of the
test alignment. These two  scores have been proposed or used by
some groups with alternative names (Edgar and Sjolander, 2004;
Marti-Renom et al., 2004; Sauder et al., 2000; Wang and Dunbrack,
2004; Yona and Levitt, 2002). We  primarily used the Qd score to
measure alignment accuracy because it is only affected by Nc. We
also employed other measurements such as the Cline score (QCline)
(Cline et al., 2002) and the model quality score total MaxSub (tMS)
(Siew et al., 2000) as complements on some of the benchmarks.

2.8. Iterative grid search for parameter optimization

To determine the optimal gap penalty parameters, an automatic
iterative grid search was  performed on each method. There were
three parameters to be optimized for each method: the gap open-
ing penalty g0, the gap extension penalty g1 and the shift value c.
There was  a fourth parameter, the second gap extension penalty
g2, for the BGP involved methods. Using the parameter optimiza-
tion of pcc + AGP as an example, the whole optimization procedure
is briefly described as follows. Regarding the AGP, three parame-
ters (g0, g1 and c) needed to be optimized. We  first set the initial
range of these three parameters as twice the value range of the
pcc scoring function. Since the value range of pcc is [−1, 1], the
initial range of each parameter is [−2, 2]. Subsequently, the opti-
mization grid search was  carried out by the following steps: (i) the
grid was  constructed by dividing the initial range into 5 steps for
each parameter; (ii) the Qd score was  calculated for each set of
parameters, and the best parameter set of this round was found
with the maximal Qd score; (iii) the new range of each parameter
was narrowed down centered on the best set, with 1 step range on
either side, then a smaller 5-step grid was constructed; and (iv) the
iteration continued, until the Qd score of the current round was no
greater than the last round, or the step was  less than 0.01.

3. Results
3.1. The training results based on PREFAB 4.0

We used the same 91 protein pairs as in the SP5 paper (Zhang
et al., 2008) out of PREFAB 4.0 (Edgar, 2004) with less than 30%
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Table  1
Optimized parameters of the 32 test methods by PREFAB 4.0.a

Method Parameter

SF GP SSR g0 g1 g2 c

b62

AGP No 15.18 0.11 n/a 1.73
BGP  No 11.06 2.56 0.04 0.86
SPGP No 14.04 1.16 n/a 0.86
WPGP No 13.09 1.37 n/a −0.79
AGP Yes 11.29 0.80 n/a 0.19
BGP Yes 11.34 2.89 0.43 −0.13
SPGP Yes 12.36 1.16 n/a 0.72
WPGP Yes 11.95 2.14 n/a −2.15

pcc

AGP No 1.98 0.00 n/a 0.01
BGP No 1.35 0.43 0.19 −0.41
SPGP No 1.66 0.13 n/a −0.08
WPGP No 1.51 0.55 n/a −0.89
AGP Yes 1.14 0.04 n/a −0.11
BGP Yes 1.05 0.13 0.01 0.00
SPGP Yes 1.78 0.12 n/a −0.22
WPGP Yes 1.19 0.57 n/a −0.87

prob score

AGP No 4.05 0.22 n/a 0.50
BGP No 3.50 0.39 0.35 0.31
SPGP No 4.20 0.22 n/a 0.87
WPGP No 3.44 0.33 n/a 0.48
AGP Yes 4.46 0.10 n/a 0.90
BGP Yes 4.08 0.44 0.33 0.38
SPGP Yes 3.98 0.18 n/a 0.90
WPGP Yes 3.52 0.59 n/a −0.11

prof sim

AGP No 0.27 0.37 n/a −1.13
BGP No 0.22 0.03 0.01 −0.42
SPGP No 0.26 0.01 n/a −0.40
WPGP No 0.36 0.10 n/a −0.58
AGP Yes 0.38 0.28 n/a −0.94
BGP Yes 0.35 0.26 0.24 −0.87
SPGP Yes 0.28 0.03 n/a −0.41
WPGP Yes 0.32 0.12 n/a −0.60

a The same 91 pairs of PREFAB 4.0 as SP5 were used to optimize the parameters for
each method. The titles of the columns are SF – scoring function, GP – gap penalty,
SSR – with  or without secondary structure restriction, g0 – gap opening penalty, g1

–gap extension penalty, g2 – second gap extension penalty for BGP methods, c – shift
v
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Table 2
The performance of each method on the PREFAB 4.0 training dataset.a

Method Performance

SF GP SSR Qd Qm QCline tMS

b62

AGP No 35.0 31.3 0.326 17.509
BGP No 36.1 32.4 0.342 17.559
SPGP No 35.4 31.6 0.333 17.788
WPGP No 38.2 34.8 0.367 18.737
AGP Yes 35.8 32.2 0.327 17.198
BGP Yes 36.3 32.6 0.343 17.694
SPGP Yes 36.1 32.4 0.332 17.820
WPGP Yes 38.3 35.0 0.361 18.763

pcc

AGP  No 53.3 47.0 0.509 24.993
BGP No 54.3 47.7 0.522 25.191
SPGP No 54.2 47.7 0.521 25.372
WPGP No 54.2 49.3 0.532 25.538
AGP Yes 54.4 48.0 0.517 25.373
BGP Yes 54.4 47.7 0.516 25.360
SPGP Yes 55.0 49.2 0.527 25.548
WPGP Yes 55.8 49.9 0.541 25.766

prob score

AGP No 53.1 47.1 0.507 24.692
BGP No 53.3 47.2 0.511 24.945
SPGP No 53.5 47.1 0.510 24.973
WPGP No 53.8 47.8 0.520 25.139
AGP Yes 53.3 46.9 0.507 24.885
BGP Yes 53.4 47.0 0.508 24.927
SPGP Yes 53.7 47.2 0.512 25.021
WPGP Yes 54.1 48.6 0.522 25.142

prof  sim

AGP No 53.0 47.2 0.508 24.690
BGP No 53.1 47.4 0.509 24.662
SPGP No 53.0 47.3 0.508 24.788
WPGP No 54.1 50.6 0.534 25.315
AGP Yes 53.3 47.0 0.507 24.734
BGP Yes 53.7 47.2 0.510 24.752
SPGP Yes 53.3 47.0 0.507 24.643
WPGP Yes 54.6 50.1 0.533 25.364

a The performance on the same 91 pairs of PREFAB 4.0 as SP5 was  obtained with
the optimized parameters (see Table 1). The performance scores Qd and Qm are
shown in percentages. Total MaxSub score (tMS) is the sum of MaxSub score for
alue.

dentity to each other to train the parameters of all 32 methods.
ee Table 1 for the optimized parameters of all 32 methods.

Table 2 shows the overall alignment performance of each
ethod using the corresponding optimized parameters, quan-

ified by Qd, Qm, QCline and tMS. In general, the methods using
GP, SPGP and WPGP yielded higher scores than those using
GP, and each method performed slightly better with the inclu-
ion of SSR. The absolute increase in BGP, SPGP and WPGP
ompared to AGP was smaller in profile-based scoring methods
han in the non-profile-based method (b62). The profile-based
coring functions achieved much higher levels of performance
han did b62 no matter which gap penalty was used, indicating
hat modification of the gap penalty may  be less powerful than
he improvement from the participation of profile-based scoring
unctions.

.2. The testing results based on Prosup and SALIGN benchmarks

To benchmark the 32 methods, we first tested them on two
mall established datasets, the Prosup (Domingues et al., 2000) and
ALIGN (Marti-Renom et al., 2004) benchmarks, which were usu-
lly used as training sets in many other works. Prosup contains

27 protein pairs whose sequence alignments were generated by
he structural comparison program Prosup. SALIGN consists of 200
rotein pairs that share an average of 20% sequence identity. For
ALIGN, we utilized the TM-align program (Zhang and Skolnick,
every test alignment of the 91 protein pairs. The best scores are shown in bold.

2005) to obtain the structural alignments as reference alignments
and used TM-overlap (which has the same meaning as Qd) and the
tMS score to measure the alignment accuracy and the model quality
of the test alignments.

The performance on Prosup was measured by six scores: Nc, Nm,
Ni, Qd, Q ′

d
, and Qm (Table 3). In terms of the Qd score, the profile-

based gap penalties (SPGP and WPGP) performed approximately
1–3% better than the linear gap penalties (AGP and BGP), except
that the pcc scoring function had a <0.5% decrease. Tests on the
SALIGN dataset provided similar results to those on the Prosup
dataset. The performance scores, TM-overlap (Qd), Qm, QCline and
tMS, are listed in Table 4. In general, the amount of improvement
from linear to profile-based gap penalties was around 1% and the
improvement brought by SSR was minor (0–1%) on both bench-
mark datasets. These results agree with the SP5 method (Zhang
et al., 2008), whose improvement brought by SPGP + SSR was also
slight (0.5%).

3.3. The testing results based on SABmark 1.65 benchmark

Many alignment algorithms have been tested using protein pairs
filtered with different criteria from the SCOP database (Murzin
et al., 1995). To test the methods more intensively, we used SAB-

mark 1.65 (Van Walle et al., 2005) as a larger benchmark set. The
SABmark benchmark set was generated from the SCOP database,
and it covers the entire known protein fold space with two sets:
the Superfamily set and the Twilight set. The sequence identity of
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Table  3
The performance of each method on the Prosup benchmark dataset.a

Method Performance

SF GP SSR Nc Nm Ni Qd Q ′
d

Qm

b62

AGP No 5962 1467 10,503 36.5 53.1 25.8
BGP  No 6138 1697 10,195 37.5 53.8 26.9
SPGP No 6353 1491 10,215 39.8 56.2 28.1
WPGP  No 6652 1558 9722 40.6 55.1 29.5
AGP Yes  6344 1512 10,245 39.8 53.7 28.7
BGP  Yes 6162 1646 9880 37.9 51.8 27.5
SPGP  Yes 6542 1598 10,184 40.3 55.6 28.9
WPGP  Yes 6803 1514 9609 41.6 54.8 30.6

pcc

AGP No 9345 1035 9292 57.2 71.4 39.9
BGP No 9441  1036 9298 57.5 71.0 40.5
SPGP No 9406 1136 9307 57.1 72.0 40.2
WPGP  No 9410 975 8660 57.2 70.7 40.9
AGP Yes  9420 1098 9083 57.5 71.5 40.6
BGP  Yes 9417 1016 9389 57.6 71.0 40.5
SPGP  Yes 9397 1191 8546 57.4 71.2 40.6
WPGP  Yes 9434 1009 8828 57.1 70.9 40.6

prob  score

AGP No 9386 1242 9241 57.5 71.2 40.6
BGP No 9382 1232 9287 57.4 71.6 40.7
SPGP  No 9415 1105 9435 58.0 72.5 40.7
WPGP  No 9453 1070 9215 57.7 71.3 41.0
AGP  Yes 9312 1010 9569 57.2 71.0 39.9
BGP  Yes 9354 1036 9504 57.3 70.3 40.1
SPGP  Yes 9370 1009 9448 57.2 70.7 40.1
WPGP  Yes 9538 1032 8841 59.7 72.4 41.7

prof  sim

AGP No 9360 1291 9245 57.3 70.8 40.9
BGP  No 9334 1409 9257 56.7 69.1 40.6
SPGP  No 9345 1314 9228 56.9 70.1 40.6
WPGP  No 9454 1178 8047 58.6 71.0 42.7
AGP  Yes 9283 1089 9430 56.7 68.9 39.8
BGP  Yes 9441 1049 9422 58.5 70.0 40.9
SPGP Yes 9352 1129 9385 57.1 70.3 40.2
WPGP  Yes 9493 1043 8255 58.9 72.3 42.3

a The performance on the 127 protein pairs of the Prosup dataset is obtained using the optimized parameters (see Table 1) for each method. The first five columns of
performance scores Nc , Nm , Ni , Qd , Q ′

d
are the same as Tc , Tm , Ti , �0, �±4 in the original Prosup paper (Domingues et al., 2000), which are the correctly aligned residue pairs

(Nc), the missed pairs aligned only by the reference (Nm), the incorrect pairs aligned only by the test alignment (Ni), the average percentage of correctly aligned residue
pairs  (Qd), and the average percentage of correctly aligned residue pairs within 4 positions (Q ′

d
), respectively. Note that there are alternative structure alignments in the files
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roduced by Prosup, so we took the same strategy to select the best fit between t
ses  the Prosup-derived structure alignment with the largest number of Nc , the low
cores are shown in percentages with the best ones in bold.

ach protein pair is lower than 25% in the Twilight set and at most
0% in the Superfamily set. The two scores fD and fM, which were
alculated using the scripts provided by SABmark, have the same
eanings as Qd and Qm.
The results on the SABmark 1.65 benchmark dataset showed

nalogous trends to those on the training set, the Prosup and
ALIGN dataset. Fig. 2 shows the performance scores for each
ethod on the Superfamily and Twilight sets of SABmark 1.65. Each

core of the Superfamily set was almost twice as high as that of
he Twilight set, which agrees with the corresponding sequence
dentity levels of the two SABmark sets. The profile-based gap
enalties (SPGP and WPGP) had higher (∼2%) scores than the lin-
ar gap penalties (AGP and BGP), and most methods using SSR
erformed slightly better (∼1%) than the corresponding meth-
ds without SSR. The exception occurred in methods b62 + BGP
nd pcc + WPGP, where the performance with SSR was as good as
r a bit lower (<0.3%) than the one without SSR. For prob score
nd prof sim, all of the methods using linear gap penalties (AGP
nd BGP) showed a <0.5% decrease in performance by integrating
SR, but the methods using profile-based gap penalties (SPGP and
PGP) with SSR performed ∼1% better than those without SSR. This

esult indicates that in most situations, the employment of profile-

ased gap penalties and SSR could yields better alignment accuracy,
ut the improvement is limited and inconsistent with all scoring
unctions.
t alignment and the alternative structure alignments as the original paper, which
erage shift aligned residues, and the shortest alignment length. The Qd , Q ′

d
, and Qm

4. Discussion

4.1. Gap distribution

To determine whether the gap penalties tested in this work
fit the gap distribution of reference structure alignments, we
investigated the gap distributions of all 32 methods and the ref-
erence alignments (Fig. 3). The gap distributions of references
versus gap lengths are shown as dark and dashed lines, whereas
those of tested methods are shown as gray and solid lines. The
references’ gap distributions of SALIGN and the training set dif-
fered substantially from those of SABmark. The reference lines of
SALIGN and the training set indicate that there are more short
gaps (length ≤3) in their reference alignments than in the test
alignments, while the reference alignments of the SABmark sets
contain much longer gaps. The gap distributions of the tested meth-
ods were somewhat stable in different datasets, indicating that
each gap penalty function can generate gaps in alignments fol-
lowing the corresponding distribution. Notably, although some
gap distribution analyses (Goonesekere and Lee, 2004; Gu and Li,
1995; Qian and Goldstein, 2001) have been conducted to eval-
uate gap penalty functions, there is no correlation between the

gap distribution and the alignment accuracy. What the gap dis-
tribution could only reflect is the mathematical form of the gap
penalty.
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Table  4
The performance of each method on the SALIGN benchmark dataset.a

Method Performance

SF GP SSR TM-overlap (Qd) Qm QCline tMS

b62

AGP No 32.9 31.5 29.5 41.609
BGP  No 33.3 32.1 30.4 42.126
SPGP  No 33.5 32.4 31.0 42.257
WPGP No 34.6  33.7 32.2 43.532
AGP  Yes 32.3 31.2 28.7 41.155
BGP Yes 34.2 33.3 31.4 42.630
SPGP  Yes 32.7 31.7 29.7 41.684
WPGP  Yes 34.3 33.6 31.6 44.208

pcc

AGP  No 52.7 50.3 52.7 63.316
BGP No 52.9 50.6 52.8 63.425
SPGP No 52.9 50.5 52.8 63.681
WPGP  No 53.3 51.5 53.6 63.887
AGP  Yes 53.7 51.5 53.8 64.334
BGP  Yes 53.4 51.0 53.3 63.762
SPGP Yes 51.8 50.3 51.8 62.634
WPGP  Yes 54.1 52.1 54.5 65.255

prob score

AGP No 52.7 50.3 52.5 63.105
BGP  No 52.9 50.4 52.8 63.270
SPGP No 51.6 49.1 51.2 61.953
WPGP  No 52.9 50.6 52.9 63.288
AGP Yes 52.5 49.9 52.3 62.839
BGP  Yes 52.5 49.9 52.4 62.879
SPGP  Yes 52.1 49.6 51.7 62.707
WPGP  Yes 53.7 51.5 53.9 64.150

prof  sim

AGP No 53.0 50.7 52.8 63.482
BGP  No 52.9 50.7 52.8 63.270
SPGP  No 52.6 50.4 52.5 62.969
WPGP  No 52.2 51.6 52.7 63.041
AGP  Yes 52.7 50.2 52.5 63.252
BGP  Yes 52.5 50.0 52.2 62.798
SPGP  Yes 51.3 49.0 51.0 62.328
WPGP Yes 52.9  51.9 53.5 63.882
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The performance on the 200 protein pairs of the SALIGN dataset is obtained u
M-overlap (Qd) and Qm are shown in percentages. Total MaxSub score (tMS) is the s
hown  in bold.

.2. The indel frequency profiles

Statistical analysis of the indel frequencies with and without
equence weights was conducted for aligned and gapped residues
which are aligned with gaps) in the reference alignments of the
raining set and SALIGN. As shown in Fig. 4, gapped residues tend
o have larger probabilities to be inserted or deleted than aligned
esidues, but the difference between them is not very obvious. This
mplies that indel frequency profiles do carry some information to
uide gap placements, but may  not be good enough to represent the
esidue’s propensity of being inserted or deleted at each position.
ven though the indel frequency profiles could be amplified by the
equence weighting scheme (WPGP), according to our results, the
mprovement of alignment accuracy brought by WPGP is still not
ignificant.

Ellrott et al. (2007) and Zhang et al. (2008) have used the indel
requency profiles in their gap penalty functions, but they only
onsidered them as a part of the extension penalty. The opening
enalty of an optimized gap penalty function should be much larger
han the extension penalty (Table 1), and the distribution of gap
engths also shows that short gaps (e.g., length <4) are more domi-
ant than longer gaps (Fig. 3). That is to say, the penalty of a gap is
ainly determined by the opening penalty. In this work, we  tried to

dopt the indel frequency profiles in both the opening and exten-
ion penalties of our WPGP formula. However, the gap information

aptured by the indel frequency profiles from PSI-BLAST MSAs is so
imited that profile-based gap penalties (SPGP and WPGP) yielded
ery small improvement on alignment accuracy compared to the
inear gap penalties.
he optimized parameters (see Table 1) for each method. The performance scores
 MaxSub score for every test alignment of the 200 protein pairs. The best scores are

The probable explanations for the unexpected slight improve-
ment of indel frequency profiles are: (i) the indel frequency profile
itself is not a way  good enough to capture the gap propensi-
ties from the evolutionary information in MSAs because of the
small frequency difference between gapped and aligned residues
and (ii) the input MSAs generated from PSI-BLAST have lots of
single gaps inserted in many positions, which is too noisy to cal-
culate the indel frequency profiles effectively. This also makes
the indel frequency profiles far away from the real biological gap
propensities of residues in the aligned sequences. Thus, using these
indel frequency profiles, the performance of profile-based gap
penalties (SPGP and WPGP) is hard to be significantly improved.
Maybe that is why  the development of profile–profile alignment
in literature was primarily focused on the scoring function while
comparatively less attention was  paid on developing the gap
penalty.

4.3. Secondary structure information for gaps

Some profile–profile alignment algorithms also employed the
secondary structure information as one term in their scoring func-
tions, which has proven to be helpful in improving alignment
accuracy. There were also several algorithms that use secondary
structure information to constrain the placement of gaps. In this
work, the SSR strategy is as simple as those in SP5 and MUSTER

(Wu and Zhang, 2008; Zhang et al., 2008), which only compares
the secondary structure types of the positions being aligned during
the dynamic programming process. This strategy provides some
help on improving the alignment accuracy according to current
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Fig. 2. The performance of each method on the Superfamily and Twilight sets of SABmark 1.65. (A–D) The performance of different scoring functions on the Superfamily set
and  (E–H) the performance of different scoring functions on the Twilight set. The SABmark scores fD and fM for all 19,092 protein pairs in 425 groups of the Superfamily set
and  all 10,667 protein pairs in 209 groups of the Twilight set are shown as percentages. Values with and without secondary structure restriction (SSR) are above and below
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enchmark experiments. But compared to the employment of sec-
5
ndary structure in scoring functions of SP and MUSTER, the

econdary structure information appears more suitable and pow-
rful for constructing scoring functions than being incorporated in
ap penalties.
4.4. The training–testing strategy and practical use
In some alignment algorithm studies, the gap penalty param-
eters were trained using small training sets, whereas others
only used empirical default settings like the “10 and 1” affine
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Even the b62 scoring function and AGP caused a small amount
of improvement in alignment accuracy after several rounds of

grid search (data not shown). Therefore, it is necessary for
every alignment algorithm to obtain optimized gap penalty
parameters in order to maximize the performance in practical
applications.
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To train and test different alignment algorithms, many train-
ng sets have been compiled with reference alignments inferred
rom different structure alignment programs and different sim-
larity levels among sequences. The discrepancy between the
ize and quality of training sets probably makes the alignment
lgorithm performance results incomparable to each other. This
ould probably be due to the disagreement of alignments gen-
rated by different structural alignment methods. Considering
hat the optimization of gap penalty parameters is important but
ime-consuming, an ideal training set should cover the whole
rotein fold space within a small size. It is hoped that some
gold standard” datasets will be available in the near future to
nable different alignment algorithms to be benchmarked more
eliably.

. Conclusions

In summary, we critically assessed the alignment accuracy of
our different gap penalties (AGP, BGP, SPGP, and WPGP) in com-
ining with several profile–profile scoring functions. We  would

ike to emphasize the following findings. First, our results showed
hat the variable gap penalties which utilize gap information from
SI-BLAST profiles could achieve better performance than the lin-
ar gap penalties, but the overall improvement was small. Even
sing a proper sequence weighting scheme, the indel frequency
rofiles incorporated into our WPGP may  not be the best way to
apture biological gap information from PSI-BLAST profiles. There-
ore, the maximal potential of the indel frequency profiles remains
o be discovered. Second, we found that secondary structure is also
eneficial information for profile–profile alignment algorithms,
ut when used as the SSR strategy in gap penalties, it was not
s powerful as when integrated in scoring functions. Third, we
ound that the gap distributions cannot be effective in assess-
ng alignment performance, although they were usually used to
valuate gap penalty functions. Finally, the optimization of gap
arameters is necessary by properly selecting a well-constructed
raining set for both alignment algorithm assessments and prac-
ical applications. It is hoped that the current work will provide
ome hints for the development of new profile–profile alignment
lgorithms.
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