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Abstract
Background: The triosephosphate isomerase (TIM)-barrel fold occurs frequently in the
proteomes of different organisms, and the known TIM-barrel proteins have been found to play
diverse functional roles. To accelerate the exploration of the sequence-structure protein landscape
in the TIM-barrel fold, a computational tool that allows sensitive detection of TIM-barrel proteins
is required.

Results: To develop a new TIM-barrel protein identification method in this work, we consider
three descriptors: a sequence-alignment-based descriptor using PSI-BLAST e-values and bit scores,
a descriptor based on secondary structure element alignment (SSEA), and a descriptor based on
the occurrence of PROSITE functional motifs. With the assistance of Support Vector Machine
(SVM), the three descriptors were combined to obtain a new method with improved performance,
which we call TIM-Finder. When tested on the whole proteome of Bacillus subtilis, TIM-Finder is
able to detect 194 TIM-barrel proteins at a 99% confidence level, outperforming the PSI-BLAST
search as well as one existing fold recognition method.

Conclusions: TIM-Finder can serve as a competitive tool for proteome-wide TIM-barrel protein
identification. The TIM-Finder web server is freely accessible at http://202.112.170.199/TIM-Finder/
.

Background
Proteins have complex three-dimensional (3D) shapes, a
fact well demonstrated by more than 60,000 experimen-
tally determined structures deposited in the current PDB
database http://www.rcsb.org/pdb/home/home.do. The
number of unique protein folds (or architectural types)
should be much smaller than the number of protein fam-
ilies defined by sequence similarity [1]. As more structures
are determined, it also becomes increasingly clear that the
distribution of proteins between different folds is not

even [2]. Although many folds have so far been observed
for only a few proteins, some protein folds (known as
superfolds) occur frequently. As reported by Salem et al.
(1999), the top ten superfolds could account for approxi-
mately one third of all proteins in the PDB database.

One of the top ten superfolds is the triosephosphate iso-
merase (TIM)-barrel fold (Figure 1A). It was first observed
in triosephosphate isomerase and consists of eight α-hel-
ices on the outside and eight parallel β-strands on the
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inside that alternate along the peptide backbone [3]. In
the past, many protein structures with the TIM-barrel fold
have been determined, which allow a more complete
understanding of the fold space of the TIM-barrel (Figure
1B). In the SCOP database (version 1.73) [4], the TIM-
barrel fold contains 33 superfamilies and 101 families
(Figure 1B). As a common fold with multiple functions,
TIM-barrel proteins often function as enzymes. They can
catalyze five of the six categories of biochemical reactions
[5]. The evolution of the TIM-barrel fold has also received
considerable attention, and it has been established that
the TIM-barrel fold is one of the most ancestral folds [6].

To identify the structural fold for a query protein
sequence, classical sequence similarity searching methods
(e.g., BLAST [7] and FASTA [8]) can be employed to scan

the query protein sequence against others with known
structures. It is possible, however, that two structurally
similar proteins may share weak sequence similarity (i.e.,
remote homology). Marked improvements in detecting
such remote homology relationships can be obtained
using sensitive sequence-searching methods such as PSI-
BLAST [9] and Hidden Markov Models(HMM) [10]. In
recent years, more powerful remote homology identifica-
tion techniques called fold recognition or threading meth-
ods (e.g., FFAS03 [11], 3D-PSSM [12], Fugue [13],
mGenThreader [14], ORFeus [15]) have been elegantly
developed as well. The overall impressive performances of
these algorithms, which combine different types of struc-
tural and sequence information, have been widely dem-
onstrated in a series of CASP experiments [16], as well as
in some real-time evaluation systems of structure predic-
tion servers (e.g., LiveBench) [17].

The advantage of the above methods is that they are suit-
able for many protein fold types, but they may lack the
specificity to recognize certain folds. Therefore, it is neces-
sary to develop specialized computational tools for recog-
nizing some important protein folds. Similar efforts have
been successful in identifying some protein families, such
as β-barrel membrane proteins [18-21], G-protein cou-
pled receptors (GPCRs)[22,23] and glycosyltransferases
[24]. To accelerate the exploration of the sequence-struc-
ture protein landscape in the TIM-barrel fold, it is neces-
sary to develop a specific and reliable method to detect
TIM-barrel proteins.

In this work, any measurement between two proteins can
be regarded as a descriptor. For instance, the e-value
obtained from a BLAST search of protein A against protein
B can be regarded as a descriptor between them. Based on
such a broad definition, a great many descriptors have
been developed in past decades, of which many can be
used to measure the sequence similarity between two pro-
teins. Because different descriptors may reflect different
aspects of similarity between two proteins and can be
complementary to a certain extent, the combination of
well-performing descriptors can result in improved per-
formance. An example of such improvement is the generic
fold recognition method developed in our previous work
[25]. Based on a similar strategy, in this work we com-
bined three descriptors into a prediction system with the
assistance of Support Vector Machine (SVM). The three
implemented descriptors are the sequence-alignment-
based descriptor using PSI-BLAST e-values and bit scores,
the descriptor based on the alignment of secondary struc-
tural elements (SSEA), and the descriptor based on the
occurrence of PROSITE functional motifs [26]. The pro-
posed TIM-barrel protein identification system, TIM-
Finder, gives highly accurate results. The details of the
construction of the three descriptors and the SVM-based

The TIM-barrel foldFigure 1
The TIM-barrel fold. (a) Cartoon representation of the 
3D structure of a typical TIM-barrel protein (triosephos-
phate isomerase, PDB entry: 8tim). (b) The SCOP statistics 
on the TIM-barrel fold.
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predictor are reported. The overall performance of TIM-
Finder is also benchmarked against one of the state-of-
the-art fold recognition methods, Fugue, via a proteome-
wide identification of TIM-barrel proteins in the bacteria
Bacillus subtilis.

Results and discussion
Performance of the individual descriptors
In the present study, three descriptors were used to recog-
nize TIM-barrel proteins. The three descriptors were indi-
vidually benchmarked via a reference dataset called
SCOP_10_mod, which contains 163 TIM-barrel proteins
and 843 structurally diverse non-TIM-barrel proteins. The
details of the construction of the three descriptors, the
compilation of the SCOP_10_mod dataset, and the evalu-
ation procedures are outlined under Methods.

The overall performance of the PSI-BLAST-based descrip-
tor was measured using Receiver Operator Characteristic
(ROC) analysis [27], which plots true positive rate (TPR)
(i.e., Sensitivity) as a function of false positive rate (FPR)
(i.e., 1-Specificity). The area under the ROC curve (AUC)
was also employed to assess the performance. As shown in
Figure 2, the PSI-BLAST-based descriptor results in an
AUC value of 0.920. At a 5% FPR control, the PSI-BLAST-
based descriptor can correctly detect 74.8% of TIM-barrel
proteins. As a profile-based sequence searching algorithm,
PSI-BLAST has been widely applied in many aspects of
protein structure and function prediction. For instance,

the PSI-BLAST algorithm has been integrated into most
state-of-the-art fold recognition methods [12-14]. It also
acts as a reference algorithm to benchmark any newly
developed fold recognition method. In this work, the PSI-
BLAST-based descriptor was used as a key component to
construct our TIM-barrel protein prediction system.

Predicted secondary structure has long been proven to be
helpful in protein fold classification and recognition [28],
and the SSEA-based descriptor has been reported to be an
effective way to consider the information of predicted sec-
ondary structure [14,29,30]. As shown in Figure 2, the
SSEA-based descriptor performs the best, and it achieves
an AUC value of 0.953. At a FPR less than 5%, the SSEA-
based descriptor is able to successfully recognize 78.5% of
the TIM-barrel proteins. As reported in our previous study
[25], the PSI-BLAST-based descriptor is much better than
SSEA at generic fold recognition. Interestingly, SSEA is
more powerful than the PSI-BLAST-based descriptor in
recognizing TIM-barrel proteins. Generally, the TIM-bar-
rel fold has a well conserved 3D structure, which consists
of eight β-strands and eight α-helices. From N-terminus to
C-terminus, the secondary structure of a typical TIM-bar-
rel fold is strictly arranged as β1-α1-β2-α2-β3-α3-β4-α4-
β5-α5-β6-α6-β7-α7-β8-α8 (Figure 1A), which may
explain why the SSEA descriptor is so powerful in recog-
nizing TIM-barrel proteins. The performance of the SSEA-
based descriptor is further demonstrated in two TIM-bar-
rel proteins distant from one another in sequence space:
1vpqA (SCOP index: c.1.32.1) and 1i60A (SCOP index:
c.1.15.4). Because the two proteins share a weak sequence
similarity, the PSI-BLAST-based descriptor fails to recog-
nize their remote homologous relationship. With a SSEA
score of 0.814, however, the SSEA-based descriptor is able
to catch these two proteins' structural similarity. The suc-
cess of SSEA should be ascribed to the overall conserva-
tion of secondary structure topology between these two
proteins, which can be observed from their structural
alignment derived from the CE algorithm [31] (Figure 3).

The motif-based descriptor leads to an AUC value of
0.792, which is less impressive than the PSI-BLAST- and
SSEA-based descriptors (Figure 2). At a ≤ 5% FPR control,
the motif-based descriptor only correctly recognizes
46.0% of the TIM-barrel proteins. Sequence motifs have
been reported to correlate with protein folds [25,32]. The
central idea of the motif-based descriptor is to recognize
TIM-barrel proteins based on motif-fold compatibility. In
this work, we used the PROSITE database, because it is
one of the most widely used and comprehensive sequence
motif databases. The PROSITE motifs are mainly defined
as patterns (i.e., regular expressions) and profiles, which
were derived from analysis of sequences of known func-
tion. For each PROSITE motif, its compatibility with the
TIM-barrel fold was measured by a score called

The overall performance of three descriptors individually measured by ROC analysisFigure 2
The overall performance of three descriptors individ-
ually measured by ROC analysis.
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S(TIM|motif). Of the 2096 motifs under investigation, 103
have S(TIM|motif)> 0.1, including 91 patterns and 12 pro-
files. As an illustrative example, we have provided the 3D
model for a TIM-barrel protein and the structural location
of a PROSITE motif PS00171 (Figure 4), which was ana-
lyzed as having the highest S(TIM|motif) score. Due to the
functional diversity of TIM-barrel proteins, the PROSITE
motifs are obviously enriched in this fold. Therefore, the
motif-based descriptor, which represents local sequence
features of proteins, should be particularly suitable for
recognizing TIM-barrel proteins. Additionally, the motif-
based descriptor is alignment independent, meaning that
it should be complementary to the other two alignment
related descriptors (i.e., the PSI-BLAST- and SSEA- based
descriptors). Thus, it should be informative when com-
bined with the other two descriptors, although the motif-
based descriptor itself is not powerful.

Performance of TIM-Finder
Using SVM, the PSI-BLAST-, SSEA- and motif-based
descriptors were combined into a prediction system called
TIM-Finder. More details of the construction of TIM-
Finder are available under Methods. The overall perform-
ance of TIM-Finder was further measured by the ROC
curve (Figure 5). For the purpose of comparison, predic-
tion based on the combination of PSI-BLAST- and SSEA-
based descriptors was also carried out. Meanwhile, the
result from the single PSI-BLAST-based descriptor is also

shown in Figure 5 to provide a benchmark for TIM-Finder.
As shown in Figure 5, TIM-Finder results in a high AUC
value of 0.987. Since the performance at low false positive
rates is more important for real-world applications, the
sensitivity values of TIM-Finder at 1%, 5% and 10% FPRs
are further listed in Table 1. With a 5% FPR rate control,
TIM-Finder is able to correctly identify 92.0% of the TIM-
barrel proteins, which is approximately 17 percentage
points higher than the individual PSI-BLAST-based
descriptor and about 12 percentage points higher than the
combination of the PSI-BLAST- and SSEA-based descrip-
tors (Table 1; Figure 5). Although the motif-based descrip-
tor itself has an overall weak performance, it should be
emphasized here that the motif-based descriptor does
make an important contribution to the final performance
of TIM-Finder (Figure 5), implying that it relies on quite
different features from the PSI-BLAST- and SSEA-based

The CE structural alignment of two TIM-barrel proteins 1vpqA and 1i60AFigure 3
The CE structural alignment of two TIM-barrel pro-
teins 1vpqA and 1i60A. Although the PSI-BLAST-based 
descriptor was not able to detect the remote homologous 
relationship between 1vpqA (green) and 1i60A (yellow), the 
SSEA-based descriptor can successfully recognize their struc-
tural similarity based on a SSEA score of 0.814.

Cartoon representation of a TIM-barrel protein (PDB entry: 1n55)Figure 4
Cartoon representation of a TIM-barrel protein 
(PDB entry: 1n55). The structural location of the most fre-
quently occurred PROSITE motif (entry: PS00171, pattern: 
[AVG]- [YLV]-E-P- [LIVMEPKST]- [WYEAS]- [SAL]- [IV]- 
[GN]- [TEKDVS]- [GKNAD]) in the 3D model is shown in 
magenta.

Table 1: The sensitivity values of TIM-Finder at different false 
positive rates (FPRs)a

Sensitivity

FPR = 1% FPR = 5% FPR = 10%

PSI-BLAST 68.7% 74.8% 79.8%
PSI-BLAST + SSEA 39.3% 80.3% 89.6%

TIM-Finder 80.4% 92.0% 95.1%
AAC_SVM 12.9% 31.9% 44.8%

a The FPRs at 1%, 5% and 10% mean that the corresponding specificity 
values are 99%, 95% and 90%, respectively.
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descriptors. Generally, TIM-Finder has been benchmarked
to have an excellent performance, implying it can be
applied in practical use such as proteome-wide TIM-barrel
protein detection.

Comparison with the amino acid composition based SVM 
model
As reported in the literature [33,34], simple amino acid
composition (AAC) based SVM models have been widely
employed for classification of proteins. For comparison, a
simple composition based method (AAC_SVM) was also
developed to distinguish TIM-barrel and non-TIM-barrel
proteins. More details about the construction of
AAC_SVM are available in Methods. Due to the limited
sequence information encoded by AAC, the performance
of AAC_SVM tends to be worse than TIM-Finder (Table 1;
Figure 5). AAC_SVM achieves an AUC value of 0.800,
which is much lower than that of TIM-Finder (0.987) (Fig-
ure 5). At a 5% FPR control, AAC_SVM can correctly detect
only 31.9% of TIM-barrel proteins, while the correspond-

ing identification rate of TIM-Finder is up to 92.0%
(Table 1).

Comparison with the Fugue fold recognition method
As mentioned, TIM-barrel proteins can also be identified
by state-of-the-art fold recognition methods. Therefore, it
is also important to benchmark TIM-Finder against fold
recognition methods. In this work, TIM-Finder was
benchmarked against the Fugue fold recognition method,
a profile-based fold-recognition program that makes
extensive use of both sequence and structural information
[13], via a proteome-wide TIM-barrel protein identifica-
tion in B. subtilis. For the purpose of comparison, TIM-bar-
rel protein identification based on a standard PSI-BLAST
search was also carried out. More details about the pro-
teome-wide computational experiments are available in
Methods.

Of the 3,575 B. subtilis protein sequences under investiga-
tion, TIM-Finder detects 194 TIM-barrel proteins at a 1%
FRP control (Table 2). At the same confidence level, Fugue
and PSI-BLAST recognize 184 and 164 TIM-barrel pro-
teins, respectively. At a 5% FPR control, the performance
of TIM-Finder is still better than that of Fugue and PSI-
BLAST. Although Fugue has been well benchmarked to be
a leading fold recognition method [17,35], TIM-Finder
revealed an overall higher TIM-barrel protein identifica-
tion rate than Fugue, confirming that it is really necessary
to develop specific recognition methods for some impor-
tant protein folds. It is not surprising that both TIM-Finder
and Fugue can surpass the PSI-BLAST search, because the
PSI-BLAST search was incorporated in TIM-Finder as well
as in Fugue. It was also observed that the three methods
are complementary to some extent (Table 3). Considering
the identification at a 1% FPR control, for instance, only
approximately 80% of the TIM-barrel proteins identified
by TIM-Finder are also recognized by Fugue. To maximize
a proteome-wide TIM-barrel protein identification, a
combination of different methods could therefore still be
recommended.

However, the assessment of different methods based
merely on the number of identified TIM-barrel proteins in
B. subtilis is still quite subjective. In this work, the follow-
ing efforts were made to allow a fair comparison. First, the

The overall performance of TIM-Finder measured by ROC analysisFigure 5
The overall performance of TIM-Finder measured by 
ROC analysis.

Table 2: Proteome-wide TIM-barrel protein identification in B. subtilis

Identified TIM-barrel proteins in B. subtilis

TIM-Finder Fugue PSI-BLAST

99% confidencea 194/3,575 = 5.4% 184/3,575 = 5.1% 164/3,575 = 4.6%
95% confidenceb 294/3,575 = 8.2% 280/3,575 = 7.8% 250/3,575 = 7.0%

aA 99% confidence level means a FPR rate ≤ 1% (i.e., Specificity = 99%). bA 95% confidence level means a FPR rate ≤ 5% (i.e., Specificity = 95%).
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same NR database (i.e., NR90) was used in processing the
above three methods. Second, all TIM-barrel proteins in
the Fugue library (i.e., the HOMSTRAD database) share
sufficient sequence similarity with the TIM-barrel proteins
in the library of TIM-Finder (i.e., the SCOP_40_TIM data-
set), ensuring a fair comparison between TIM-Finder and
Fugue. Even with the above efforts, however, we are still
not able to guarantee a fully unbiased assessment. For
instance, the Fugue Z-score threshold for different confi-
dence levels was proposed by considering the recognition
of all protein fold types, which may not be suitable for the
recognition of TIM-barrel proteins alone.

Conclusions
The proposed method TIM-Finder, incorporating the PSI-
BLAST-, SSEA-, and motif-based descriptors, has been
intensively benchmarked to have good performance, sug-
gesting that it can serve as a powerful predictor to be prac-
tically applied in proteome-wide TIM-barrel protein
detection. Concerning future development, the following
three aspects should be taken into account to obtain a
more comprehensive prediction system. 1) From the
viewpoint of structural biologists, it may be more interest-
ing to target new TIM-barrel superfamily proteins. There-
fore, in the future version of TIM-finder, we may consider
including a prediction option to indicate whether a query
sequence belongs to a new TIM-barrel superfamily. 2) The
current TIM-Finder is not able to provide a sequence align-
ment between the query sequence and the generated hit,
which may limit its further application. To solve this
problem, a state-of-the-art profile-profile alignment algo-
rithm [36] can be employed. 3) The current TIM-Finder
may lose some sensitivity in processing sequences with
multiple domains. Therefore, a reasonable domain parser
should be added as a preprocessing step in the future ver-
sion of TIM-Finder.

Methods
Data sets
In the present study, we used the SCOP database (version
1.73; released in December, 2007) to assess the perform-

ance of the different descriptors, train the SVM models of
TIM-Finder, and construct the library of TIM-Finder. Sev-
eral SCOP sequence datasets with different sequence
redundancy were obtained from http://scop.mrc-
lmb.cam.ac.uk/scop/[4,37]. The downloaded SCOP_10
dataset contains 163 TIM-barrel proteins and 5,451 non-
TIM-barrel proteins, and the sequence identity for any
sequence pair in this dataset is ≤ 10%. Because all TIM-
barrel proteins have a sequence length of more than 100
amino acids, the non-TIM-barrel proteins with less than
100 amino acids were removed. Moreover, for each non-
TIM-barrel fold, only one protein was randomly selected
as the final negative control. Thus, the SCOP_10 dataset
was compiled into a modified dataset of 163 TIM-barrel
proteins and 843 non-TIM-barrel proteins (i.e.,
SCOP_10_mod), which was employed to assess the per-
formance of the different descriptors as well as training
the SVM models. The SCOP_40 dataset, containing 9,536
proteins, was downloaded for the construction of the
library of TIM-Finder. The downloaded SCOP_95 dataset,
containing 15,273 proteins, was used to derive the motif-
based descriptor.

The NCBI non-redundant (NR) sequence database was
downloaded from ftp://ftp.ncbi.nlm.nih.gov/blast/
(November, 2008). The NR database was further clustered
at 90% identity by using the CD-hit program [38], and the
resulting NR90 database, containing 4,205,215
sequences, was used to implement the PSI-BLAST search.
To derive the motif-based descriptor, the PROSITE release
20.27, which contains 1,318 patterns and 778 profiles,
was obtained from http://www.expasy.org/prosite/[26].

Descriptors
PSI-BLAST-based descriptor
A PSI-BLAST search for sequence A against sequence B was
executed in the following two steps. First, sequence A was
searched against the NR90 database by PSI-BLAST for
three rounds to generate a profile. The e-value cutoff for
including sequences in the profile was set at 0.001. Sec-
ond, a PSI-BLAST search was performed on the obtained
profile against sequence B for another round. The above
PSI-BLAST search resulted in two parameters, the expected
value evalue(A, B) and the bit score Score(A, B), which can
be used to measure the sequence similarity between A and
B. In this work, evalue(A, B) was modified according to the
following equation.

Secondary structure element alignment-based descriptor
Briefly, performing a SSEA for two query sequences A and
B consisted of the following three procedures. First, the
secondary structure prediction for the two query
sequences was carried out by PSIPRED [39]. Second, the

evalue mod A B log evalue A B_ ( , ) ( ( , ))= − (1)

Table 3: Comparison of the consensus among TIM-Finder, 
Fugue, and PSI-BLAST in detecting TIM-barrel proteinsa, b

TIM-Finder Fugue PSI-BLAST

TIM-Finder -- 154 (79.4%) 144 (74.2%)
Fugue 154 (83.7%) -- 143 (77.7%)

PSI-BLAST 144 (87.8%) 143 (87.2%) --

a The comparison was based on a 99% confidence level.b The value 
outside the parentheses denotes the total number of B. subtilis 
sequences that were identified as TIM-barrel proteins by both 
methods, whereas the value inside the parentheses represents the 
corresponding percentage, defined as the total number of consensual 
predictions from two methods divided by the total number of TIM-
barrel proteins identified by the single method appearing in the row.
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predicted secondary structural string was converted into a
secondary structure element such that "H" represents a
helix element, "E" denotes a strand element, and "C"
stands for a coil element. For instance, the secondary
structure string HHHHHHHCCCCEEEEEEECCCCCCCH-
HHHHH should be shortened to HCECH, the length of
each element being retained for the scoring of SSEA.
Third, the two shortened strings (i.e., secondary structure
elements) were aligned using a dynamic programming
algorithm [40] with a scoring scheme adapted from Przy-
tycka et al. [30]. The resulting alignment score SSEA(A, B),
ranging from 0 to 1, was used as the descriptor of the sim-
ilarity between two query sequences. To derive the SSEA-
based descriptor, our in-house SSEA algorithm was imple-
mented. More details about this SSEA algorithm are avail-
able in our previous study [25].

Motif-based descriptor
In this work, the PROSITE motif library was used to derive
the motif-based descriptor. First, the correlation between
each PROSITE motif presence and the TIM-barrel fold in
the SCOP database (i.e., SCOP_95) can be quantified by
a log-odds score S defined as:

where p(motif) and p(TIM) are the individual probabilities
of finding a particular sequence motif and a TIM-barrel
protein in the SCOP database, and p(TIM, motif) is the cor-
responding joint probability. We used the Perl script
ps_scan ftp://ftp.expasy.org/databases/prosite/tools/
ps_scan/ to compute whether a protein sequence contains
a particular PROSITE motif or not. Furthermore, the
motif-based compatibility between a query sequence and
TIM-barrel fold can be expressed as:

where S(TIM|motif) was calculated from equation 2 and
summation was performed over all motifs found in the
query sequence and fulfilling the following criteria:

where C is an adjustable parameter, with 0.1 being a pre-
liminary optimized value in this work. For a given protein
sequence, a larger value of Smotif(TIM|sequence) means a
higher chance that the sequence is a TIM-barrel protein.
Therefore, Smotif(TIM|sequence) is used as the motif-based
descriptor.

Evaluation of individual descriptors
Based on the SCOP_10_mod dataset, the three descrip-
tors' performance in recognizing TIM-barrel proteins was

individually assessed. To assess the performance of the
PSI-BLAST-based descriptor, a Leave-One-Out analysis
was carried out. Each time, a TIM-barrel protein was
selected as a "test" protein. By calculating the similarity
scores (i.e. evalue_mod(A, B)), the "test" protein was
searched against all other TIM-barrel proteins in the
SCOP_10_mod dataset and the protein with the most sig-
nificant similarity score (i.e., the top hit) was recorded.
Likewise, the non-TIM-barrel proteins were also searched
against all TIM-barrel proteins. The top hits and the corre-
sponding evalue_mod(A, B) scores were also recorded. By
defining a threshold value, the TIM-barrel identification
accuracy was measured by Sensitivity and Specificity with
definitions as below.

Moreover, a ROC curve, which plots TPR (i.e., Sensitivity)
as a function of FPR (i.e., 1-Speficity) for all possible
thresholds, was also employed to measure the perform-
ance. The AUC was also calculated to provide a compre-
hensive understanding of the performance of the PSI-
BLAST-based descriptor. Generally, the closer the AUC
value is to 1, the better the descriptor is. The SSEA-based
descriptor (i.e., the SSEA(A, B) score) was evaluated based
on the same strategy.

Regarding the motif-based descriptor, the score Smo-

tif(TIM|sequence) for each protein within the
SCOP_10_mod dataset was calculated. Because Smo-

tif(TIM|sequence) reflects a given sequence's compatibility
with the TIM-barrel fold, it was directly used to judge
whether a given protein should have the TIM-barrel fold.

Construction of TIM-Finder
SVM learning
In this work, the three descriptors were combined into a
prediction system called TIM-Finder with the assistance of
the SVM algorithm. As a machine-learning method for
two classes of classification, SVM aims to find a rule that
best maps each member of a training set to the correct
classification [41,42]. Here, the SVM was trained to distin-
guish two different protein pairs related to TIM-barrel pro-
teins. In the first type of protein pair (i.e., positive
sample), both proteins are TIM-barrel proteins. The
SCOP_10_mod dataset contains 13,203 positive samples
[i.e., (163 × 162)/2 = 13,203 pairs; N.B. the pair (A, B) is
the same as (B, A) in this case]. In the second type of pro-
tein pair (i.e., negative sample), the first protein is of TIM-
barrel fold but the second one belongs to a non-TIM-bar-

S TIM motif log
p TIM motif

p TIM p motif
|

( , )
( ) ( )

( ) =
×

(2)

S TIM sequence S TIM motifmotif

motif

| |( ) = ( )∑ (3)

S TIM motif C|( ) > (4)

Sensitivity TPR
Ncorrectly identified TIM barrel proteins

N
= = −   

aall TIM barrel proteins  −

(5)

Specificity FPR
Nnon TIM barrel proteins identified as= − = − − −

1 1
      

  

TIM barrel ones
Nall non TIM barrel proteins

−
− −

(6)
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rel protein. Thus, the SCOP_10_mod contains 137,409
negative samples [i.e., 843 × 163 = 137,409 pairs; N.B. the
pair (A, B) is not the same as (B, A) in this case].

Due to the direction in which the PSI-BLAST search is car-
ried out, the search for A against B is different from the
search for B against A. In our work, the PSI-BLAST search
for sequence B against A was also carried out. Thus, four
parameters (i.e., evalue_mod(A, B), Score(A, B),
evalue_mod(B, A) and Score(B, A)) were generated from
the PSI-BLAST-based descriptor. The SSEA descriptor pro-
vides one parameter (i.e., SSEA(A, B)). Regarding the
motif-based descriptor, two parameters (i.e., Smo-

tif(TIM|sequence A) and Smotif(TIM|sequence B) were used.
Thus, a total of seven parameters were used in the SVM
learning.

The SCOP_10_mod dataset can be compiled into 150,612
protein pairs, which were further divided into 5 roughly
equal subsets. An evaluation similar to 5-fold cross-vali-
dation was performed. To predict whether a given protein
pair belongs to the first type or the second type, the subset
to which this pair belongs was labeled as the "test" set,
whereas the four remaining subsets were labeled as "train-
ing" sets. SVM models were developed for each of the
"training" sets. The class label for positive (i.e., the first
type) and negative (i.e., the second type) samples was set
to +1 and -1, respectively. The ratio of positive to negative
samples was 1:10 in the training set. Using the training set
at such a ratio would inevitably cause the SVM model to
predict every pair as a negative case. The optimized ratio
in the training set was set at 1:2.5. Each training set was
modified by discarding a random selection of the negative
samples prior to training. The training resulted in four
separate SVM models, with the predicted score being
obtained as an average value over the scores from the four
different SVM models.

The implemented SVM algorithm was LIB-SVM http://
www.csie.ntu.edu.tw/~cjlin/. The applied kernel function
was the radial basis function (RBF). The corresponding
parameter settings of SVM learning were automatically
optimized by LIB-SVM.

It is worth mentioning here that the predicted score for
each protein pair can be regarded as a combination of the
corresponding seven parameters with the assistance of
SVM. Based on the predicted scores, the performance of
TIM-Finder was assessed in the same way as we evaluated
the individual descriptors.

Web server of TIM-Finder
To facilitate the community's research, a web server of
TIM-Finder was constructed and is freely available at
http://202.112.170.199/TIM-Finder/. To sufficiently rep-

resent the known structural TIM-barrel proteins as well as
allow a reasonable computational time, the 322 TIM-bar-
rel proteins in the SCOP_40 dataset were used as the
library in the TIM-Finder system. To search a query
sequence against the TIM-barrel library (i.e.,
SCOP_40_TIM), a total of 322 protein pairs are involved.
For each protein pair, the corresponding seven parameters
are calculated. Then, the resulting seven parameters are
used as the input for the five SVM models trained in the
above section, and the predicted score is obtained as an
average value over the scores from the five different SVM
models. Generally, the predicted score reflects the query
sequence's probability of adopting a TIM-barrel fold.
Finally, the predicted scores for all protein pairs are
ranked, and the top 10 hits are reported. In the resulting
page provided by TIM-Finder, the SCOP entry number,
PDB link, prediction score, and the corresponding confi-
dence level for each of the top 10 hits are listed. The whole
process for each query normally takes about 10 minutes
with a single processor on our Red Hat Enterprise Linux 5
system.

To provide confidence levels for different prediction
scores resulting from TIM-finder, a stringent negative
dataset based on the SCOP_40 dataset was compiled.
First, in the initial SCOP_40 dataset only the non-TIM-
barrel proteins that belong to α/β class (i.e., the same
structural class as the TIM-barrel fold) were kept. Second,
the proteins with a sequence length < 100 or > 1000 were
removed. Third, the proteins that had been used in train-
ing TIM-Finder (i.e., the five SVM models) were further
discarded. Finally, 1,999 non-TIM-barrel proteins
retained. We processed all 1,999 proteins on TIM-Finder,
and it was estimated that a prediction score = 0.82 yields
a ≤ 1% FPR (i.e., 99% confidence level) and a prediction
score = 0.38 indicates a ≤ 5% FPR (i.e., 95% confidence
level). Compared with proteins from other structural
classes, query proteins belonging to the α/β class should
have a higher probability of being predicted as TIM-barrel
proteins. We only selected the α/β proteins as negative
controls, which should guarantee a reliable estimate of
thresholds for different confidence levels.

Construction of the amino acid composition based SVM 
model
The AAC-based SVM model (i.e., AAC_SVM) was trained
to distinguish TIM-barrel and non-TIM-barrel proteins.
Briefly, the 163 TIM-barrel proteins in the SCOP_10_mod
dataset were considered positive instances and their labels
were set to + 1, while 843 non-TIM-barrel proteins were
considered negative instances and their labels were set to
- 1. The AAC for each protein was used as the input feature
vector. A 10-fold cross-validation was performed. We
divided SCOP_10_mod into 10 roughly equal subsets. In
each evaluation step, one subset was selected for testing,
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while the rest nine subsets were merged into a training
dataset. LIB-SVM with the RBF kernel was employed to
train the SVM models, and the other SVM parameter set-
tings were also automatically optimized by LIB-SVM.
Based on the predicted SVM scores, AAC_SVM was
assessed in the same way as TIM-Finder.

Proteome-wide TIM-barrel protein identification based on 
TIM-Finder, Fugue and PSI-BLAST
To benchmark the performance of TIM-Finder, Fugue, and
PSI-BLAST, the proteome-wide TIM-barrel protein identi-
fication in B. subtilis was carried out. The whole proteome
of B. subtilis, which contains 4,102 protein sequences, was
obtained from ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacte
ria. The B. subtilis proteins with a sequence length <100 or
>l000 amino acids were ruled out in our analysis, because
they have less chance to be TIM-barrel proteins or a high
possibility of containing more than one domain. Thus,
3,575 sequences were kept for further analysis.

.
TIM-Finder was performed on these 3,575 sequences via
the established TIM-Finder server. The stand-alone ver-
sion of Fugue [13] was provided by Dr. Kenji Mizuguchi
(National Institute of Biomedical Innovation, Japan), and
the corresponding fold library (i.e., the HOMSTRAD data-
base) in its version of 05/2008 was downloaded from
http://tardis.nibio.go.jp/homstrad/, which consists of
4,026 representative protein structures. The 3,575 protein
sequences were processed by Fugue, and the top hits as
well as the corresponding Z-scores were generated for each
query sequence. As suggested by Fugue developers, a Z-
score = 6.0 corresponds to a 99% confidence level and a
Z-score = 4.0 indicates a 95% confidence level. For com-
parison, the PSI-BLAST search was also performed on
these 3,575 protein sequences. As in deriving the PSI-
BLAST-based descriptor, each sequence was first searched
against the NR90 database by PSI-BLAST for three rounds
to generate a profile. Then a PSI-BLAST search was per-
formed on the obtained profile against the SCOP_40_TIM
sequences for another round and the top hit was recorded.
Based on the same procedure as we used to define the con-
fidence levels of TIM-Finder prediction scores, it was esti-
mated that an e-value ≤ 0.009 means a 99% confidence
level and an e-value ≤ 0.066 indicates a 95% confidence
level.

Availability and requirements
Project Name: TIM-Finder

Project home page: http://202.112.170.199/TIM-Finder/

Operating system: Online service is web based; local ver-
sion of the software should be run in a Linux platform.
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License: Free.
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