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The protein databases contain a huge number of function
unknown proteins, including many proteins with newly
determined 3D structures resulted from the Structural
Genomics Projects. To accelerate experiment-based
assignment of function, de novo prediction of protein
functional sites, like active sites in enzymes, becomes
increasingly important. Here, we attempted to improve
the prediction of catalytic residues in enzyme structures
by seeking and refining different encodings (i.e. residue
properties) as well as employing new machine learning
algorithms. In particular, considering that catalytic resi-
dues can often reveal specific network centrality when
representing enzyme structure as a residue contact
network, the corresponding measurement (i.e. closeness
centrality) was used as one of the most important encod-
ings in our new predictor. Meanwhile, a genetic algor-
ithm integrated neural network (GANN) was also
employed. Thanks to the above strategies, our GANN pre-
dictor demonstrated a high accuracy of 91.2% in the pre-
diction of catalytic residues based on balanced datasets
(i.e. the 1:1 ratio of catalytic to non-catalytic residues).
When the GANN method was optimally applied to real
enzyme structures, 73.9% of the tested structures had the
active site correctly located. Compared with two existing
methods, the proposed GANN method also demonstrated
a better performance.
Keywords: catalytic residues/closeness centrality/genetic
algorithm/neural network/prediction

Introduction

Providing functional annotation is one of the major tasks in
the field of protein bioinformatics nowadays, given the con-
siderable accumulation of protein sequence and structure
data (Shapiro and Harris, 2000; Gutteridge et al., 2003; Ofran
et al., 2005). For a query enzyme, the identification of cataly-
tic residues is one of the most important steps towards under-
standing its biological roles and exploring its applications. In
particular, the identified catalytic residues can greatly help in
performing enzyme-targeted drug design, understanding the
catalytic mechanism of enzyme reactions and constructing
metabolic pathways (Bartlett et al., 2002; Chou and Cai,
2004; Porter et al., 2004).

Sequence and structural similarity based methods are two
classical bioinformatics strategies widely used to identify cat-
alytic residues in a query enzyme. The sequence similarity
based method requires the identification of homologous
enzyme sequences with known catalytic residues.
Subsequently, catalytic residues in an identified homolog can
be transferred to the query sequence. However, in some
cases such method can be misleading due to the fact that
enzyme functions are less conserved (Todd et al., 2001; Rost,
2002; Tian and Skolnick, 2003). The structural similarity
based method is also able to identify catalytic residues even
when no clear sequence similarity is detectable, provided
that the 3D structure for the query enzyme is available
(Orengo et al., 1999). By mapping catalytic residues of a
structural homolog into the query enzyme, such ‘structure-
based functional annotation’ can offer in-depth insight by
often highlighting 3D structural arrangements of catalytic
residues. Even so, the power of structure-based annotation is
often weakened by the fact that a similar fold does not
necessarily imply a similar function (Nagano et al., 2002).

It has been well accepted that proteins without detect-
able sequence or structural similarity may have the same
configuration of active sites for catalyzing similar reactions
(i.e. convergent evolution) (Torrance et al., 2005; Zhang
and Grigorov, 2006; Zhang and Tang, 2007).
Complementary to sequence or structural similarity based
methods, therefore, several methods focusing only on the
local pattern of active sites and recognizing catalytic resi-
dues by comparing query structures with active site tem-
plates of known enzymes have been developed (Torrance
et al., 2005; Goyal et al., 2007). With the accumulated
enzyme structures deposited in the PDB database (Berman
et al., 2000), sequence and structural characters of catalytic
residues have been intensively investigated (Bartlett et al.,
2002; Amitai et al., 2004; Bate and Warwicker, 2004;
Ben-Shimon and Eisenstein, 2005; del Sol et al., 2006;
Chea and Livesay, 2007). Meanwhile, de novo prediction
methods (i.e. strategies independent of sequence alignment,
structural comparison, or active-site matching) have also
been developed to identify catalytic residues in enzyme
structures. For example, some methods based on sequence
or structural properties have been reported to achieve quite
high accuracy (Chou and Cai, 2004; Ko et al., 2005),
although these methods have only been tested on a specific
enzyme family or a small number of proteins.

With the advantage of incorporating different sequence or
structural properties into a predictor, machine learning algor-
ithms such as artificial neural network (ANN) and support
vector machine (SVM) have also been used for the de novo
prediction of catalytic residues in heterogeneous enzymes
(Gutteridge et al., 2003; Petrova and Wu, 2006; Youn et al.,
2007). Compared with other machine learning based predic-
tion tasks in the field of protein bioinformatics, this import-
ant topic is relatively less addressed and there is still enough
room to improve.
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In the present study, we focused our efforts to improve the
prediction of catalytic residues based on the following two
strategies. First, many available encoding schemes were eval-
uated to refine a subset of useful encodings. In particular, we
transformed each enzyme structure into a residue interaction
network (Greene and Higman, 2003), in which catalytic resi-
dues reveal specific closeness centrality (Amitai et al., 2004;
del Sol et al., 2006). To our best knowledge, such infor-
mation has not been incorporated in previously published
machine learning based predictors. Secondly, in addition to
SVM algorithm, a genetic algorithm integrated neural
network (GANN) was also employed. The central idea of
GANN is to use a genetic algorithm (GA) for optimizing the
connection weights within neural networks. Compared with
ANN trained with the standard back propagation algorithm,
GANN generally can achieve a better performance in many
applications (Cho, 1999; Fish et al., 2004; Tang et al., 2007).
In our recent publication about the prediction of protein
phosphorylation sites, GANN can even reveal a better per-
formance than SVM (Tang et al., 2007). In this paper, we
report in detail about how the above two strategies are con-
sidered together to improve the prediction of catalytic
residues.

Methods

Dataset
To facilitate a comparison of different predictors, the enzyme
dataset originally compiled by Petrova and Wu (2006) was
also used in the present study. Containing 79 protein
domains, this dataset covered all 6 top level enzyme classifi-
cations (78 unique EC numbers) and 77 SCOP families.
Since sequence redundancy was removed, there was no sig-
nificant sequence similarity for any sequence pair within this
dataset (Petrova and Wu, 2006). The corresponding PDB
files for these 79 structures were retrieved from the SCOP
database (Murzin et al., 1995) (release 1.71, http://scop.
mrc-lmb.cam.ac.uk/scop/), and active site annotation was
from the Catalytic Site Atlas (Porter et al., 2004) (http://
www.ebi.ac.uk/thornton-srv/databases/CSA/), including 240
catalytic residues in all.

Encoding of residue properties
To construct a machine learning based catalytic residue pre-
dictor, residue properties must be converted into input
feature vectors (i.e. encodings). Residue properties evaluated
here covered residue type, sequence conservation, network
centrality, relative position, hydrogen bonding, solvent acces-
sibility, flexibility, and secondary structure. Properties rep-
resented by characters or strings including residue type,
relative position, and secondary structure were converted into
binary codes, while the rest real-number scores were directly
used as the input of a predictor. More details about these
encodings are described as follows.

Residue type Different amino acids evidently have different
propensities to be catalytic residues (Bartlett et al., 2002).
Two encodings were used to represent this property. The first
encoding is named AA_Type20, in which each of the 20
amino acids was encoded with a 20-dimensional binary
vector, e.g. A (1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0),

C (0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0),. . .,Y (0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1), etc. The second encoding called
AA_Type3 was based on a three-type classification of 20
amino acids, in which charged (DEKHR), polar (CNQSTY),
and hydrophobic residues (AFGILMPVW) were encoded as
(0 0), (0 1), and (1 0), respectively.

Sequence conservation One of the most important character-
istics of catalytic residues is that they are highly conserved.
Generally, they are more conserved not only than the average
residues, but also than other functional residues, such as the
ones involved in binding substrates (Bartlett et al., 2002;
Porter et al., 2004). To compute the conservation score for a
residue, a BLAST searching (Altschul et al., 1997) for the
corresponding sequence was performed against the NCBI
non-redundant protein sequence database (the version of
09-03-2007) with a 1025 E-value cut-off to obtain a multiple
sequence alignment (MSA). The MSA was then submitted to
the Scorecons server (Valdar, 2002) (http://www.ebi.ac.uk/
thornton-srv/databases/cgi-bin/valdar/scorecons_server.pl) to
score residue conservation with default parameters. Finally,
the conservation score called cons was used as the sequence
conservation based encoding. In some cases, the number of
hits resulted from BLAST searching was more than 400. To
accelerate the processing of the Scorecons server, Cd-hit (Li
and Gozik, 2006) was used to filter these hits with an adjus-
table cut-off of sequence identity until the remained hits was
less than 400. In other cases, the number of hits might be
less than 10. To include enough sequences for a more
reliable calculation of conservation, a three-iteration
PSI-BLAST searching (Altschul et al., 1997) was run with
an E-value cut-off of 10220 to include sequence in the
position specific scoring matrix model.

Network centrality Residues in or directly contacting with
active site usually have more interactions with other residues,
so centrality values of catalytic residues in the network
representation of enzyme structures are typically high,
especially the closeness centrality (Amitai et al., 2004; del
Sol et al., 2006; Chea and Livesay, 2007). To materialize
these network centrality based encodings, each structure was
transformed into an undirected residue interaction graph.
Residues were modeled as vertices in the graph, and an edge
was added between a pair of vertices if the shortest distance
between any pair of atoms from two residues was no more
than 5.0 Å. In other words, residues i and j were considered
to have an edge if at least one atom from residue i was at a
distance of �5.0 Å to an atom from residue j. With the
established network, three encodings (NCC_nw, NCC_ww,
and NDC) were employed to measure network centrality,
which are briefly described as follows.

Firstly, the closeness centrality score CC_nwi for any
residue i within a network was calculated as

CC nwi ¼
n� 1
P

i=j dij

ð1Þ

where n was the total number of vertices in the graph and
di j was the shortest path distance between vertices i and j,
calculated using the Dijkstra algorithm (del Rio et al., 2001).
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The score was normalized over the entire structure as

NCC nwi ¼
CC nwi � CC nw

sðCC nwÞ ð2Þ

where NCC_nwi was the normalized closeness centrality
score for residue i, CC nw was the average value of close-
ness centrality over all residues, and s(CC_nw) was the stan-
dard deviation. In the above calculation, no weight was
assigned for any edge within the network graph, i.e. dij

was equal to the number of edges on the shortest path from
vertex i to j. Therefore, the above NCC_nw encoding
means the normalized closeness centrality score without
weight. Meanwhile, we also weighted each edge by the
shortest distance between the two corresponding residues
to construct the NCC_ww encoding, i.e. the normalized clo-
seness centrality score with weight, which was calculated
using similar equations except for that dij was equal to
the sum of weights on edges along the shortest path from
vertex i to j.

Additionally, the NDC encoding, i.e. the normalized
degree centrality score, was also derived. For each residue i,
NDCi was defined as

NDCi ¼
DCi � DC

sðDCÞ ð3Þ

where DCi was the degree centrality, defined as the
number of edges connecting to vertex i, DC was the average
value of degree centrality over all residues, and s(DC) was
the corresponding standard deviation.

Relative position Active sites in almost all enzymes reside in
clefts (Bartlett et al., 2002; Tseng and Liang, 2007).
Therefore, cleft environment was used here to present the
relative position of a given residue. First, all clefts for a
given structure were assigned by SURFNET (Laskowski,
1995). As described by Gutteridge et al. (Gutteridge et al.,
2003), the relative position of a residue was then divided into
four categories according to the size of the cleft in which it
located. Finally, the Cleft encoding for a residue was
assigned, i.e. lying in the largest cleft (1 0 0 0), the second
or third largest (0 1 0 0), the fourth to ninth largest (0 0 1 0)
or none of the above clefts (0 0 0 1).

Hydrogen bonding Most catalytic residues act as donor or
acceptor in at least one hydrogen bond. In particular, hydrogen
bonds from main chain atoms to other residues in a protein
are important in maintaining the conformation of these cataly-
tic residues (Bartlett et al., 2002). Hydrogen bonds were
calculated using HBPLUS (McDonald and Thornton, 1994),
and the following three parameters were used to represent
this property. NmHB is the number of hydrogen bonds from
a main-chain atom in a given residue to any other atom in a
protein, NsHB denotes the number of hydrogen bonds from a
side-chain atom in a given residue to any other atom in a
protein, and tNHB indicates the total number of hydrogen
bonds involving any atom in a given residue.

Relative solvent accessibility It has been well established
that catalytic residues are generally more exposed to solvent
than non-catalytic residues. Accordingly, we calculated

relative solvent accessibility (RSA) for residues via
NACCESS (Hubbard and Thornton, 1993), and five RSA
based encodings were constructed: AaRSA means the RSA of
all atoms; TsRSA is the RSA of all side chain atoms, includ-
ing alpha carbons; NpRSA stands for the RSA of non-polar
side chain atoms (i.e. all non-oxygens and non-nitrogens in
the side chain); ApRSA is the RSA of all polar side chain
atoms (i.e. all oxygen and nitrogen in the side chain); and
McRSA is the RSA of all main chain atoms.

Structural flexibility Catalytic residues are often more rigid
than average ones in an enzyme structure (Bartlett et al.,
2002; Yuan et al., 2003). Here, two normalized B-factors
based encodings (NBf_RES and NBf_CA) were calculated to
measure residue flexibility. NBf_RES was the normalized
B-factor of a residue, which was given by

NBf RES ¼ BRES � BRES

sðRESÞ ð4Þ

where BRES was the average B-factor over all atoms in a
residue, BRES was the average BRES over all residues,
and s(RES) was the corresponding standard deviation.
NBf_CA was the normalized B-factor of Ca atom, which was
defined as

NBf CA ¼ BCA � BCA

sðCAÞ ð5Þ

where BCA was the B-factor of Ca atom in a residue, BCA

was the average value over Ca atoms from all residues, and
s(CA) was the corresponding standard deviation.

Secondary structure It is well known that catalytic residues
are more inclined to locate in coil regions (Bartlett et al.,
2002). Therefore, secondary structure information may be
helpful in catalytic residue prediction. DSSPcont (Carter
et al., 2003) was used to assign secondary structure state.
The structural categories generated by DSSPcont include
310-helix (G), a-helix (H), p-helix (I), b-strand (E), isolated
b-bridge (B), turn (T), and bend (S) and other. In this paper,
these eight states were simplified to helix = fG, H, Ig,
sheet = fE, Bg, and coil = fT, S and otherg. For each residue,
the SS3 (Three-State Secondary Structure) based encoding
was assigned, i.e. (0 0) for helix, (0 1) for sheet, and (1 0)
for coil.

Training and testing
Testing based on balanced datasets To validate the perform-
ance based on different encodings as well as different
machine learning methods, the ratio of positive instances (i.e.
catalytic residues) to negative instances (non-catalytic resi-
dues) was initially set as 1:1. A 10-fold cross-validation was
performed. Since the number of available non-catalytic resi-
dues is much larger than that of catalytic residues, five differ-
ent negative sets were randomly selected to train and test a
predictor for a reliable assessment.

First, an integrated SVM program named LIBSVM
(Chang and Lin, 2001) was used for evaluating each encod-
ing with default parameters. The applied kernel function here
is the radial basis function. Secondly, the feature selection
tool (Chang and Lin, 2001) based on LIBSVM was
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employed to find the optimal subset of properties, which
turned out to be eight encodings with a dimension of 30 in
this work.

Moreover, we passed the best property subset to GANN,
in which a GA was performed to optimize the connection
weights of an ANN over the training dataset. The current
GANN contains one input layer, one hidden layer, and one
output layer. To obtain the optimized connection weights, a
four-step genetic process was applied. First, an initial popu-
lation of chromosomes is randomly created in the first gener-
ation. Each chromosome is used to encode a weight vector of
the neural network. Secondly, a fitness value is assigned to
each chromosome in the current generation. The fitness func-
tion (f ) for GA is defined as the Matthews correlation coeffi-
cient (MCC). Thirdly, three operators (SELECTION,
CROSSOVER, and MUTATION) are applied to the chromo-
somes of the current generation to obtain the new chromo-
somes of the next generation. In the fourth step, the above
iterative training procedures are carried out to obtain the
newer generation until fulfilling a terminal condition. At the
end of training, the best chromosome with the highest fitness
from the last generation is selected to create an ANN pre-
diction model that can be used to perform a feed-forward
computation to obtain the prediction output over a test
dataset. After preliminary optimization, in this work par-
ameters used in the GANN algorithm were set as follows:
(i) the number of input nodes: 30; (ii) the number of hidden
nodes: 5; (iii) the number of output nodes: 1; (iv) maximum
generation number: 1420; (v) population size: 100; (vi)
crossover probability: 0.95; (vii) initial mutation probability:
0.015; (viii) threshold of the fitness value: 0.9. For more
details about the GANN algorithm and corresponding con-
figurations, please refer to our recent publication related to
GANN based protein phosphorylation site predictor (Tang
et al., 2007).

Prediction in entire structures Since there are much more
non-catalytic than catalytic residues in real enzymes, the pre-
dictor trained with balanced datasets is not suitable. To con-
struct a better predictor for the prediction in entire structures,
the ratio must be optimized. In this test, 79 enzymes were
divided into 10 roughly equal groups by structure, i.e. each
group contained seven or eight intact structures. Again, a
10-fold cross-validation was performed. For every testing
group, we constructed five training sets by varying the non-
catalytic residues. Performance was averaged over results
based on all the tests.

Using LIBSVM based on the selected eight properties, it
was found that the best ratio of catalytic to non-catalytic resi-
dues in the training sets was 1:6, which is consistent with
Gutteridge et al.’s work (Gutteridge et al., 2003). However,
at such a relatively large proportion of non-catalytic residues,
some structural properties might bring in more noise than
useful information, so we tried to re-optimize the selected
subset by removing that kind of properties. Since the dimen-
sionality of the input feature vector changed, the number of
hidden nodes and the terminal condition in the GANN algor-
ithm were also re-optimized.

Performance measure
Four measurements, i.e. accuracy (AC), true positive rate
(TPR), false positive rate (FPR), and MCC, were used to

evaluate the prediction performance with definition as
follows:

AC ¼ tp + tn

tp + fn + tn + fp
ð6Þ

TPR ¼ tp

tp + fn
ð7Þ

FPR ¼ fp

fp + tn
ð8Þ

MCC ¼ tp� tn �fp� fn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(tp + fp)� (tp + fn)� (tn + fn)� (tn + fp)
p : ð9Þ

where tp, fp, fn, and tn denote true positives, false posi-
tives, false negatives, and true negatives. When the numbers
of positive and negative data are different, MCC should be
more suitable for assessing the overall prediction accuracy.
The value of MCC ranges from 21 to 1, and higher MCC
means better prediction performance.

When a prediction is performed on an entire structure, it is
also important to know if the active site can be correctly
identified. Based on the predicted catalytic residues, the fol-
lowing procedures described in Gutteridge et al.’s paper
(Gutteridge et al., 2003) were employed to locate the pre-
dicted active sites. First, two predicted catalytic residues
were clustered together if the shortest distance between them
was no more than 4.0 Å, and each cluster was represented by
a sphere whose centre was the geometric centroid of Cb

atoms of all component residues (Ca atom in glycine) and
radius was equal to the distance from the farthest Cb atom to
the centre. Secondly, single residues were added to an exist-
ing cluster if this would not increase its radius to over
20.0 Å. Thus, several clusters could be constructed and each
cluster was considered as a predicted active site. Known
active sites were also defined as spheres as above, and a
radius of 3.0 Å was assigned for a single-residue site. For
each enzyme structure, a correct active site prediction means
the overlap between a predicted active site and the corre-
sponding known site is greater than 50% of the volume of
the known one; a partially correct prediction means the
overlap is less than 50%; and an incorrect prediction means
no overlap at all.

Results and discussion

Results based on balanced datasets
In this work, 18 residue property based encodings were indi-
vidually evaluated with the assistance of LIBSVM program.
As shown in Fig. 1A, sequence conservation based encoding
(i.e. cons) remained the most informative encoding, which is
in line with previous studies (Gutteridge et al., 2003; Petrova
and Wu, 2006). Interestingly, closeness centrality based
encoding (NCC_ww and NCC_nw) appeared to be the
second discriminative feature. In addition, performance
based on closeness centrality seemed relatively steady over
different datasets (cf. Fig. 1A). Comparatively, NCC_ww was
a little bit more powerful than NCC_nw (cf. Fig. 1A), prob-
ably due to that NCC_ww could consider the intensity of
interaction between residues to some extent. Also in accord-
ance with previous study (Amitai et al., 2004), NDC encod-
ing was not useful. A plausible reason is that degree
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centrality only described the local environment around a
residue, while closeness centrality was inclined to character-
ize a residue by its relationship with all residues in the struc-
ture, which was more helpful to decide what role this residue
played in the entire enzyme.

Moreover, the feature selection tool based on LIBSVM
was employed to select the optimized subset of properties.
As shown in Fig. 1B, eight encodings with a dimension of
30 jointly contributed to an optimal performance in predict-
ing catalytic residues, which fell into five categories, i.e.
residue type, sequence conservation, network centrality, rela-
tive position, and hydrogen bonding. It is interesting to
mention that NCC_nw contributed more than NCC_ww in
the optimized subset of residue properties (cf. Fig. 1B),
which might be due to the fact that NCC_ww is affected by
the size of side chains in different residues that enlarges its
overlap with AA_Type20. The three hydrogen-bonding-based
encodings (NmHB, NsHB, and tNHB) were not so powerful
when testing alone, but they helped when added to the first
five encodings (cf. Fig. 1B), owing to the fact that hydrogen
bonding presents another aspect of residue property, i.e. con-
formational freedom, which is not covered in the first five
encodings. Meanwhile, other properties could not help much
when added, because to some extent, they may have overlap
with encodings in the optimal subset, e.g. AA_Type3 with
AA_Type20, RSA with Cleft, structural flexibility with hydro-
gen bonding, etc. Detailed analyses of these optimal proper-
ties were illustrated in Fig. 2. It was suggested that catalytic

and non-catalytic residues did differ in these characteristics.
In particular, it was clear that catalytic residues tended
to have both high conservation scores and high closeness
centrality values (cf. Fig. 2C).

The same datasets and inputs were used to train and test
GANN based algorithm. It turned out that GANN can
achieve a better performance than LIBSVM (cf. Table I).
Compared with LIBSVM, the average accuracy was
increased by 3.0%. This might indicate that GANN was
more applicable for this kind of data than SVM.

Results of prediction in entire structures
As a matter of fact, the ratio of catalytic to non-catalytic resi-
dues is quite different from 1:1 in real enzymes. Therefore,
our method was also tested on entire enzyme structures. To
conduct such a prediction, the ratio of catalytic to non-
catalytic residues in the training datasets was optimally set as
1:6, and the testing was performed against entire enzymes.
Based on the same datasets, performance of LIBSVM and
GANN based algorithms was compared in Table II. On the
whole, GANN still showed its advantage over the LIBSVM
based method. With only three properties (AA_Type20, cons,
and NCC_nw), GANN could achieve an MCC of 0.364,
while LIBSVM needed seven attributes (AA_Type20, cons,
NCC_nw, Cleft, NCC_ww, NmHB, and tNHB) to reach an
MCC of 0.342. In addition, the most noteworthy superiority
was that GANN was much more sensitive when handling
data with such a large portion of negative instances. In com-
parison to LIBSVM, GANN could increase TPR from 57.8
to 73.2%, without notable increase in FPR (only from 2.6 to
3.8%) (cf. Table II).

We also tried to locate active sites in enzyme structures
according to the predicted catalytic residues. Spheres con-
taining clusters of predicted catalytic residues were used to
represent predicted active sites as described in the method
section. As shown in Table III, based on the prediction of
GANN, 73.9% of the enzymes had the active site correctly
located, thanks to GANN’s increased sensitivity, and in
another 20.9% the locating was partially correct. Actually,
predicted sites often lay close to the known active sites, as
only 5.2% of the tested enzymes had no predicted active
sites overlapping with the known ones.

To intuitively show the difference resulted from different
ratios of positive and negative data in training datasets, the
catalytic residue prediction of an enzyme structure (i.e.
aspartylglucosaminidase, PDB entry: 1apy) was exemplified.
As shown in Fig. 3, when using a balanced training set (1:1),
all catalytic residues could be successfully identified, but
false positive rate was also quite high. When using a 1:6
training set, much fewer non-catalytic residues were incor-
rectly predicted as catalytic yet true positive rate fell signifi-
cantly at the same time. Actually all residues would be
predicted as non-catalytic when the proportion of negative
instances kept growing in the training sets. Compared with
the prediction based on a 1:1 training dataset, it is interesting
to mention that most of the false positives located close to
catalytic residues, which indicated that they were quite likely
to be involved in the binding of substrates or the stabilization
of products. Due to the relationship between false and true
positives, location of the active sites in most enzymes includ-
ing 1apy can be correctly detected, although the identifi-
cation of catalytic residues were not as precise as in the 1:1

Fig. 1. Property evaluation and selection using LIBSVM. (A) Accuracy
based on individual property. Error bars indicated standard deviations. (B)
The prediction accuracy when other properties were added to AA_type20
step by step. The bold solid line indicated the performance of Petrova and
Wu’s method (Petrova and Wu, 2006).
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model. However, how to discriminate catalytic residues and
their structural neighbouring residues remains a challenge to
improve the accuracy of predicting catalytic residues in
enzyme structures.

Comparison of the proposed method with
two existing methods
Using the same 79 enzyme structures previously used in
Petrova and Wu’s method allowed a fair comparison between
the performance of their method and ours. Benefited from
the network closeness centrality based encoding, only four
properties (AA_Type20, cons, NCC_nw, and Cleft) were able
to achieve the same accuracy as Petrova and Wu’s method
(cf. Fig. 1B). Furthermore, the LIBSVM algorithm based on
the optimal properties slightly surpassed Petrova and Wu’s
method (cf. Table I). Further empowered by a new machine
learning algorithm, the GANN based prediction can result in
an even higher accuracy (about +4.0%) (cf. Table I).

Considering that only a small fraction of residues in an
enzyme structure are catalytic residues, the different choice
of negative dataset may have significant impact on the
reported accuracy. Either in this study or Petrova and Wu’s
paper, the prediction accuracy was averaged over several
10-fold cross-validation tests by changing negative datasets
(i.e. non-catalytic residues). Thus, the comparison between
these two methods should be reliable.

When testing the prediction in entire structures, Petrova
and Wu’s method did not optimize the corresponding ratio
of catalytic to non-catalytic residues in the training dataset,
and only achieved an MCC of 0.23. We then compared our
method with Gutteridge et al. As shown in Table II, our
GANN method increased MCC to 0.364 (Gutteridge et al.:
0.28 before clustering, 0.32 after clustering). Considering the

Fig. 2. Analyses of residue properties in the optimal subset. (A) Frequency distribution of 20 amino acids in catalytic and non-catalytic residues; (B) number
of hydrogen bonds in catalytic and non-catalytic residues; (C) residue conservation and closeness centrality properties; (D) relative position of catalytic and
non-catalytic residues.

Table I. Performance of different algorithms based on the balanced training

datasets

Algorithms AC (%) TPR (%) FPR (%) MCC

LIBSVMa 88.2+1.3 89.9+0.8 13.4+2.4 0.769+0.024
GANNa 91.2+1.2 93.0+1.1 10.6+1.9 0.827+0.023
Petrova and Wu
(Petrova and
Wu, 2006)

87.4 89 14 0.75

aThe corresponding measurement was represented as the average
value+standard deviation.

Table II. Performance of different algorithms based on the 1:6 training

datasetsa

Algorithms TPR (%) FPR (%) MCC

LIBSVMb 57.8+1.4 2.6+0.2 0.342+0.012
GANNb 73.2+2.0 3.8+0.4 0.364+0.008
Gutteridge et al., before clustering
(Gutteridge et al., 2003)

56 3.4c 0.28

Gutteridge et al., after clustering
(Gutteridge et al., 2003)

68 3.6c 0.32

aAll tests in this table were performed against entire enzymes. bThe
corresponding measurement was represented as the average value+standard
deviation. cThe FPR value was estimated based on the other measures of
performance reported by Gutteridge et al. (2003).

Y.-R.Tang et al.

300



correct location of active sites, our GANN also demonstrated
a nearly 5.0% higher accuracy (cf. Table III). Although both
the datasets used in Gutteridge et al.’s method and ours were
extracted from the Catalytic Site Atlas (Porter et al., 2004),
noted that the data set used in ours is smaller but more strin-
gent since the redundancy had been removed as reported by
Petrova and Wu (2006). Thus, such a comparison is gener-
ally reasonable.

Future perspective
By using network closeness centrality as one of the key input
features as well as adopting the GANN algorithm, not only a

high accuracy was achieved in catalytic residue identification
in the balanced model, but also most active sites in real
enzymes were successfully located. One immediate appli-
cation is to combine the current algorithm with active site
templates based searching method for a more reliable active
site prediction. Therefore, the current algorithm can be
useful in the functional annotation of newly determined
protein structures from the Structural Genomics Projects
(Brenner, 2001).

In spite of the improvement indicated above, the MCC
value of our method remained below 0.4 in the identification
of catalytic residues in entire structures, suggesting that the
current algorithm alone was still not good enough for practi-
cal use. To improve the identification of catalytic residues,
filtering out some non-catalytic residues before prediction
should be helpful. For instance, residues located in the func-
tional surface can be computationally identified first, which
have been materialized in several algorithms (Tseng et al.,
2007). Thus, difference between catalytic and non-catalytic
residues may be even more obvious due to the reduction of
noise. Exploring new properties (encodings) also leads to an
important direction to develop a better predictor. In this
study, closeness centrality plays a more important part than
any other structural feature. To some extent, this is due to
the fact that closeness centrality characterizes the relationship
between a given residue and all other residues in a protein
structure, which helped to decide its role in the entire
enzyme when catalyzing a reaction. To detect functional
sites within a protein, efforts have been increasingly paid on
finding some new sequence or structural properties (e.g. see
Refs. Bagley and Altman, 1995; Bate and Warwicker, 2004;
Liang et al., 2006; Ofran and Rost, 2007), which may further
be validated for their suitability in predicting catalytic resi-
dues. We expect that newly identified properties will not
only improve the accuracy in predicting catalytic residues,
but also strengthen our basic understanding in molecular
mechanisms of enzymatic reaction.
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