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Abstract
Background: As one of the most common protein post-translational modifications, glycosylation
is involved in a variety of important biological processes. Computational identification of
glycosylation sites in protein sequences becomes increasingly important in the post-genomic era.
A new encoding scheme was employed to improve the prediction of mucin-type O-glycosylation
sites in mammalian proteins.

Results: A new protein bioinformatics tool, CKSAAP_OGlySite, was developed to predict mucin-
type O-glycosylation serine/threonine (S/T) sites in mammalian proteins. Using the composition of
k-spaced amino acid pairs (CKSAAP) based encoding scheme, the proposed method was trained
and tested in a new and stringent O-glycosylation dataset with the assistance of Support Vector
Machine (SVM). When the ratio of O-glycosylation to non-glycosylation sites in training datasets
was set as 1:1, 10-fold cross-validation tests showed that the proposed method yielded a high
accuracy of 83.1% and 81.4% in predicting O-glycosylated S and T sites, respectively. Based on the
same datasets, CKSAAP_OGlySite resulted in a higher accuracy than the conventional binary
encoding based method (about +5.0%). When trained and tested in 1:5 datasets, the CKSAAP
encoding showed a more significant improvement than the binary encoding. We also merged the
training datasets of S and T sites and integrated the prediction of S and T sites into one single
predictor (i.e. S+T predictor). Either in 1:1 or 1:5 datasets, the performance of this S+T predictor
was always slightly better than those predictors where S and T sites were independently predicted,
suggesting that the molecular recognition of O-glycosylated S/T sites seems to be similar and the
increase of the S+T predictor's accuracy may be a result of expanded training datasets. Moreover,
CKSAAP_OGlySite was also shown to have better performance when benchmarked against two
existing predictors.

Conclusion: Because of CKSAAP encoding's ability of reflecting characteristics of the sequences
surrounding mucin-type O-glycosylation sites, CKSAAP_ OGlySite has been proved more
powerful than the conventional binary encoding based method. This suggests that it can be used as
a competitive mucin-type O-glycosylation site predictor to the biological community.
CKSAAP_OGlySite is now available at http://bioinformatics.cau.edu.cn/zzd_lab/
CKSAAP_OGlySite/.
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Background
Representing one of the most common but complicated
protein post-translational modifications (PTMs), protein
glycosylation is abundant in many cell surface and
secreted eukaryotic proteins [1-3]. Glycosylation is
involved in a variety of important biological processes
including protein stability, solubility, secretion of signal,
regulation of interactions, extracellular recognition, etc
[2]. Glycosylation is also strongly associated with mar-
keted therapeutic proteins, since more than one-third of
approved biopharmaceuticals are glycoproteins [3].

The detection of glycosylation sites in a query protein is
very helpful to understand its biological function. Com-
pared with the huge number of known protein sequences
obtained from genomic and proteomic studies, the exper-
imentally identified glycosylation sites are still limited.
Proteomics analysis of glycoproteins by mass spectrome-
try (MS) is very promising to speed up the experimental
identification of glycosylation sites [2]. Meanwhile, com-
putational detection of glycosylation sites is also playing
an increasingly important role [4,5].

N-linked and O-linked are two major types of glycosyla-
tion. N-linked glycosylation (N-glycosylation) is charac-
terized by the β-glycosylamine linkage of N-
acetylglucosamine (GlcNac) to asparagine (Asn) [1]. It
has been well established that the consensus sequence
motif Asn-X-Ser/Thr is essential in N-glycosylation [6].
The most abundant form of O-linked glycosylation (O-
glycosylation), called "mucin-type", is characterized by α-
N-acetylgalactosamine (GalNac) attached to the hydroxyl
group of serine/threonine (Ser/Thr) side chains [7,8].
Therefore, S and T (i.e. the one-letter abbreviations of ser-
ine and threonine) are regarded as mucin-type O-glyco-
sylation sites. Mucin-type O-glycosylation is commonly
found in many secreted and membrane-bound mucins in
mammal, although it also exists in other higher eukaryo-
tes [8,9]. As the main component of mucus, a gel playing
crucial role in defending epithelial surface against patho-
gens and environmental injury, mucins are in charge of
organizing the framework and conferring the rheological
property of mucus. Beyond the above properties exhibited
by mucins, mucin-type O-glycosylation is also known to
modulate various protein functions in vivo [7]. For
instance, mucin-like glycans can serve as receptor-binding
ligands during an inflammatory response [10]. Unlike N-
glycosylation, the consensus motif has not been identified
in the sequence context of O-glycosylation sites. Thus,
computational prediction of mucin-type O-glycosylation
sites in mammalian proteins is challenging and has
received considerable attention. Prediction of O-glyco-
sylation sites could offer valuable information for charac-
terizing a new protein's functional and structural
properties, like explaining mass spectrometry results as

well as improving protein structure prediction [8]. Con-
sidering the roles of mucin-type O-linked glycoproteins
involved in different diseases, computational identifica-
tion of O-glycosylation sites can also be helpful in drug
design [7]. In the current study, we focus on developing a
new algorithm to detect mucin-type O-glycosylation sites
in mammalian proteins.

A series of important prediction methods for mucin-type
O-glycosylation sites have been elegantly developed. In
1993, Elhammer et al. used a matrix statistics method to
initiate the prediction of O-glycosylation sites [11]. Subse-
quently, a vector projection method was developed
[12,13]. Furthermore, a few state-of-the-art machine
learning methods such as Neural Network (NN) and Sup-
port Vector Machine (SVM) were also heavily employed to
perform the prediction [8,14-18]. Some well-maintained
O-glycosylation site prediction web-servers, such as
NetOGlyc 3.1 [8], are also publicly available. Even so, the
prediction accuracy of these methods is generally not high
enough. Some methods revealed less convincing perform-
ance when benchmarked with independent experimental
studies [19-21]. Therefore, development of more accurate
O-glycosylation site predictor is required.

The input feature vector (i.e. encoding scheme) is very
important in obtaining a machine learning algorithm
based predictor. Generally the input for an O-glycosyla-
tion site predictor is presented by a 2n+1 residue long
sequence with S or T in the center (i.e. the window size is
equal to 2n+1). The common position-specific features
such as the standard binary encoding have been widely
used as input features [8,15,18]. Some predicted structural
properties like the solvent accessibility and secondary
structure of a glycosylation site's sequence context were
also used as input features [8,16]. Another possible useful
encoding is the evolutionary information in the form of
multiple sequence alignment profiles generated by PSI-
BLAST program [22], which has also been integrated into
the NetOGlyc 3.1 [8]. Parallel to the method development
of O-glycosylation site prediction, the sequence and struc-
tural characters of O-glycosylation sites were also investi-
gated [14,23,24]. These analyses are very helpful in
guiding the selection of new encoding scheme to predict
O-glycosylation sites.

In the present study, the prediction of O-glycosylation
sites was improved by seeking new encoding schemes.
After evaluating different encoding schemes, it was found
that the composition of k-spaced amino acid pairs
(CKSAAP) is suitable for representing an O-glycosylation
site's sequence context. The CKSAAP reflects the short-
range interactions of amino acids within a sequence or
sequence fragment, which has been successfully
employed for the prediction of protein flexible/rigid
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regions [25] and protein crystallization [26]. When k = 0,
the CKSAAP reduces to the dipeptide composition, which
has been applied in diverse prediction topics in the field
of protein bioinformatics [27-29]. With the assistance of
SVM, a predictor named CKSAAP_OGlySite has been set
up to detect mucin-type O-glycosylation sites in mamma-
lian proteins. The proposed encoding scheme resulted in
a higher accuracy than the conventional binary encoding.
The details about this proposed predictor are reported and
the overall performance is benchmarked against two exist-
ing predictors.

Results and Discussion
Prediction Performance
To develop a new O-glycosylation site predictor, mamma-
lian proteins containing experimentally verified mucin-
type O-glycosylation sites were collected from the Swiss-
Prot database [30]. The verified O-glycosylated S and T
sites were compiled into positive sites (i.e. positive data-
sets), while those S and T residues in these proteins with
no annotation related to O-glycosylation site were
selected as non-glycosylation sites (i.e. negative datasets).
Represented by a sequence fragment with central S or T
residue, each site was further parameterized by using the
CKSAAP encoding scheme. CKSAAP_OGlySite predictor
was then constructed with the assistance of SVM algo-
rithm. CKSAAP_OGlySite was trained in datasets with two
different ratios of O-glycosylation and non-glycosylation
sites (i.e. 1:1 and 1:5) and tested by using a 10-fold cross-
validation. More details about the compilation of data-
sets, CKSAAP encoding and SVM algorithm are outlined
in the Methods section. Four measurements, i.e. Accuracy
(Ac), Sensitivity (Sn), Specificity (Sp) and Matthew corre-
lation coefficient (MCC), were jointly used to assess the
performance of the proposed O-glycosylation site predic-

tor (cf. Table 1). When balanced datasets (i.e. the ratio of
O-glycosylation to non-glycosylation site was 1:1) were
used, the CKSAAP encoding with and without feature
selection were considered due to its high dimensionality,
thus different SVM models were obtained. The adopted
feature selection methods were correlation coefficient
(CC-) and information entropy (IE-) based methods.
Generally, the kernel of radial basis function (RBF)
resulted in an optimal accuracy, although different
parameters were optimized in different SVM models. In
these models, the window size was preliminarily opti-
mized to be set as 19 (i.e. 2n+1 = 19) and kmax was also
optimally set as 4 (i.e. the k-spaced amino acid pairs were
considered for k = 0, 1, 2, 3 and 4). The CKSAAP encoding
with a CC-based feature selection resulted in the highest
accuracy in predicting O-glycosylation sites. The overall
prediction accuracy (Ac) reached 83.1% for S (Sn = 80.7%,
Sp = 85.6%, MCC = 0.671) and 81.4% for T (Sn = 80.3%,
Sp = 82.5%, MCC = 0.632), which is almost equal to the
IE-based feature selection and slightly better than the
CKSAAP encoding without feature selection (cf. Table 1).

The result based merely on balanced datasets is not suffi-
cient to evaluate the performance of an encoding scheme
because of the fact that there are much more non-glyco-
sylation sites than O-glycosylation sites in mammalian
proteins. To have a reliable evaluation of the CKSAAP
encoding, the proposed predictor was also carried out
using 1:5 datasets with the same window size and kmax as
used in balanced datasets. Considering the minor contri-
bution resulted from the dimensional reduction in deal-
ing with balanced datasets, feature selection was not
carried out in this case. When the numbers of positive and
negative data are different, MCC should be more suitable
for assessing the overall prediction accuracy. The value of

Table 1: Prediction accuracy of O-glycosylation sites based on different encoding schemesa

Site Encoding scheme Feature selection Sn (%) Sp (%) Ac (%) MCC

S Binaryb No selection 74.2 ± 1.7 81.9 ± 3.0 78.0 ± 1.9 0.567 ± 0.039
Binaryc No selection 76.5 ± 3.5 74.6 ± 3.6 75.6 ± 3.1 0.523 ± 0.060

CKSAAP No selection 77.9 ± 1.7 86.5 ± 3.0 82.2 ± 1.8 0.655 ± 0.037
CKSAAPc No selection 79.0 ± 5.2 83.0 ± 2.4 81.0 ± 2.6 0.628 ± 0.050
CKSAAP CC 80.7 ± 3.3 85.6 ± 3.9 83.1 ± 2.8 0.671 ± 0.055
CKSAAP IE 82.1 ± 2.3 83.9 ± 3.8 83.0 ± 2.4 0.665 ± 0.048

T Binaryb No selection 74.8 ± 4.1 78.3 ± 1.7 76.6 ± 2.3 0.536 ± 0.045
Binaryc No selection 77.8 ± 3.4 76.6 ± 3.2 77.2 ± 2.4 0.548 ± 0.048

CKSAAP No selection 80.4 ± 2.2 82.3 ± 2.9 81.3 ± 2.3 0.631 ± 0.045
CKSAAPc No selection 80.3 ± 1.9 85.7 ± 1.9 83.0 ± 1.8 0.666 ± 0.038
CKSAAP CC 80.3 ± 1.8 82.5 ± 2.3 81.4 ± 1.3 0.632 ± 0.026
CKSAAP IE 80.8 ± 1.5 81.9 ± 3.1 81.3 ± 2.2 0.631 ± 0.045

a The SVM based prediction algorithm with the RBF kernel function. The CC-based feature selection resulted in the highest accuracy, and the 
corresponding values of Ac and MCC were represented in bold types. The corresponding measurement was represented as the average value ± 
standard deviation. b In this encoding scheme, the window size was optimally set as 41. cThe method was trained and tested on new negative site 
data sets where <40% identity was not required between positive and negative sites.
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MCC ranges from -1 to 1, and higher MCC stands for bet-
ter prediction performance. As shown in Table 2, the MCC
value reached 0.575 for S (Sn = 56.7%, Sp = 95.6%, Ac =
89.1%) and 0.608 for T (Sn = 68.8%, Sp = 92.9%, Ac =
88.9%). Methods based on different ratios of positive to
negative sites were reported in the literature [8,18]. The
performance of CKSAAP_OGlysite in this study is based
merely on datasets with two different ratios. To construct
a better predictor for practical use, the ratio may be further
optimized by evaluating the algorithm in all the mamma-
lian proteins with verified O-glycosylation sites. However,
the number of experimentally determined O-glycosyla-
tion sites is still quite limited and the real proportion of
O-glycosylation to non-glycosylation sites in mammalian
proteins is still unclear. Therefore, how to select the opti-
mal ratio of positive/negative sites in training a prediction
model remains an open question. Since the ratio of posi-
tive/negative sites in NetOGlyc3.1 is close to 1:5, in this
paper a ratio of 1:5 dataset was selected to allow a fair
comparison between CKSAAP_OGlySite and
NetOGlyc3.1.

The negative dataset may contain numerous un-anno-
tated positive sites, which is one of the major limitations
of the machine learning based O-glycosylation site predic-
tors. To remove these "potential" O-glycosylation sites
within the data sets of negative sites, those with >40%
identity with any positive site were discarded. The defini-
tion of the identity between two sites is detailed in the sec-
tion of Datasets. Based on this strategy, some "true"
negative sites with relatively high sequence identity with
any positive site were filtered. Thus, it seems that only the
"easy" negative sites remain in the training datasets, then
one may argue that such a filtration may "artificially"
result in a higher performance. To clarify this point, we
performed another computational experiment by select-
ing negative sites without the filtration of 40% identity,
and then the proposed prediction method was re-trained
and assessed. As shown in Table 1, the predictor based on
the new negative datasets only cause a minor difference of
accuracy (-1.2% in predicting S sites and +1.7% in predict-

ing T sites). Therefore, the filtration of 40% identity did
not result in an overestimated accuracy.

Top ranked amino acid pairs
The limited improvement resulted from the dimensional
reduction (+0.9% for S sites and +0.1% for T sites) is prob-
ably because SVM has a good tolerance to high dimen-
sional data. In other words, SVM is not sensitive to the so-
called "the curse of dimensionality". The dimensionality
reduction was able to allow us to catch a glimpse at those
"important" amino acid pairs remained after the CC- or
IE-based feature selection. To guarantee the 10-fold cross-
validation is a real cross-validation, the rule of dimension-
ality reduction is strictly limited to be inferred from the
training data set. In the 10-fold cross-validation, there-
fore, the final dimensionality is different in different SVM
models. With a cut-off value of 0.1 in the CC-based fea-
ture selection, the final dimensionality are in the range
from 490–510 for S and 300–330 for T. Regarding the IE-
based feature selection, the cut-off of IG was set as 0.1 and
the final dimensionality is around 640–660 for S,
730–750 for T. Based on all the cross-validation tests, the
top 20 k-spaced amino acid pairs after the dimensionality
reduction were listed in Table 3. Although two different
feature selection methods resulted in two different subsets
of the selected features, they share some common amino
acid pairs, implying a good consistency between these two
methods. In the top 20 features of O-glycosylated S sites,
the CC- and IE-based methods resulted in 15 consistent
amino acid pairs, whereas the number of consistent
amino acid pairs is 12 in analyzing O-glycosylated T sites.

To compare amino acid usage in the top ranked k-spaced
amino acid pairs between S and T sites, the histogram of
occurrences of each amino acid in the top ranked 500 k-
spaced pairs was plotted in Figure 1. This histogram
clearly showed that amino acid usage in the selected 500
k-spaced amino acid pairs is similar between S and T sites,
suggesting that it is reasonable to integrate the prediction
of S and T sites into one predictor. To materialize this con-
cept, we merged the datasets of S and T sites to construct a
new predictor. In this new predictor (i.e. S+T predictor),

Table 2: Comparison of CKSAAP_OGlySite with NetOGlyc 3.1

Site Method Sn (%) Sp (%) Ac (%) MCC

S Binarya,b 49.7 ± 4.8 88.0 ± 0.8 81.7 ± 1.4 0.364 ± 0.054
CKSAAP_OGlySitea,b 56.7 ± 3.2 95.6 ± 0.4 89.1 ± 0.8 0.575 ± 0.040

NetOGlyc 3.1b 54.9 ± 0.3 91.6 ± 0.7 85.6 ± 0.5 0.473 ± 0.011

T Binarya,b 60.8 ± 0.8 85.4 ± 1.3 81.3 ± 1.2 0.416 ± 0.026
CKSAAP_OGlySitea,b 68.8 ± 1.7 92.9 ± 0.3 88.9 ± 0.2 0.608 ± 0.009

NetOGlyc 3.1b 76.9 ± 0.0 86.1 ± 0.6 84.6 ± 0.5 0.549 ± 0.009

aThe method was trained and tested in datasets with a 1:5 ratio of O-glycosylation sites to non-glycosylation sites. b The corresponding 
measurement was represented as the average value ± standard deviation.
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we combined central S and T to create a new amino acid
type. The same encoding scheme, prediction method and
performance assessment were then carried out. The new
predictor was also tested in datasets with two different
ratios of O-glycosylation to non-glycosylation sites (i.e.
1:1 and 1:5) and the results were summarized in Table 4.
Generally, the performance of this new predictor is
slightly better than those predictors where S and T sites
were independently predicted (cf. Tables 1, 2 and 4), sug-
gesting that there are no significant differences in the
molecular recognition of O-glycosylated S/T sites and the
increase of the method's accuracy may be a result of
expanded training datasets. On the other hand, only one
predictor is required to predict O-glycosylated S/T sites in
this new strategy, which may be more convenient for prac-
tical use.

Further analysis on the top k-spaced amino acid pairs may
strengthen our understanding on the characteristics of the
sequence surrounding O-glycosylation sites. As shown in
Table 3, P, S and T frequently occur in these important
amino acid pairs, which are in line with the observation
that P, S and T residues frequently appear in the vicinity of
O-glycosylation sites [14]. As reported by Christlet and
Veluraja [24], P at +3 and/or -1 positions strongly favors
O-glycosylation sites, which is also correlated with our
analysis that SXXP, TXXP, PS and PT are top ranked amino

acid pairs (cf. Table 3). Moreover, the listed amino acid
pairs also support the observation that the residues with
small side chains are preferred to be located in O-glyco-
sylation sites [14].

Table 3: The top 20 features selected by correlation coefficient (CC-) and information entropy (IE-) based methods

Site S T

Top 20 features CC IE CC IE

1 ST PXXS TXXPa,b TXXP
2 SXXP PXP PT PT
3 PXXXXS PS AXXXP TT
4 PXXS SXS PXT TXXXT
5 TXXP SXXP PP TXXXXT
6 PXP ST TP TXT
7 PXXXXP SXXXP AXP PXT
8 SXXXP PXXXP PXXXXP TP
9 SXP SXXXS TXXXXP PP
10 TXXXP PXXXXP TXA PXP
11 PS PXXXXS PXXXP TS
12 SXXXT SXXXXP SXXXP TXXXXP
13 TP TS SXXT PXXXXP
14 TXXXXS SS TT SXXT
15 TS SP PXXA PXXXP
16 TXXA SXP SA SXXXXT
17 PXT PXT PXA TXXS
18 PXXXP TXXXXS TXXXP ST
19 PP TXXP PXP TXXXP
20 PXXP PXXP AXXXXT PXXXT

a TXXP represents a 2-spaced amino acid pair of TP, where X stands for any amino acid. The same representation was applied to other k-spaced 
amino acid pairs. b The k-spaced amino acid pairs in bold type mean they are consistently ranked as the top 20 features by both feature selection 
methods.

The occurrences of each amino acid in top 500 k-spaced amino acid pairsFigure 1
The occurrences of each amino acid in top 500 k-
spaced amino acid pairs. The top 500 k-spaced amino 
acid pairs were resulted from the CC-based feature selection 
and ranked by considering all the cross-validation tests.
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Comparison of different encoding schemes
When the predictors were trained and tested in balanced
datasets, the CKSAAP encoding revealed about 5.0%
higher accuracy than the binary encoding (cf. Table 1).
While in 1:5 datasets, the CKSAAP encoding revealed an
even more significant improvement than the binary
encoding. In contrast to the binary encoding, the CKSAAP
encoding showed an increased MCC value of 0.211 and
0.192 in predicting S and T sites, respectively (cf. Table 2).
The comparison was further illustrated in the Receiver
Operating Characteristic (ROC) curves (Figures 2 and 3).
The ROC curves of the prediction of O-glycosylated S and
T sites based on balanced datasets were shown in Figures
2A and 2B, while the ROC curves based on 1:5 datasets
were illustrated in Figures 3A and 3B. Generally the high-
est and leftmost ROC curve in the plot represents the best
classification method. As shown in Figures 2 and 3, the
results based on CKSAAP encoding scheme are much bet-
ter than those based on the classical binary encoding,
which can be further quantified by the corresponding
areas under ROC curves (AUC). Either in predicting S or T
sites, the AUC resulted from CKSAAP encoding based on
balanced datasets is about 0.04–0.05 higher than that of
binary encoding. While in 1:5 datasets, the CKSAAP
encoding yielded about a 0.07 increase of AUC than the
binary encoding. When benchmarked on balanced data-
sets without the requirement of a <40% sequence identity
between positive and negative sites, the CKSAAP encoding
also revealed about 5.0% higher accuracy than the binary
encoding (cf. Table 1). Overall, the above results clearly
showed that the CKSAAP encoding has a significant
advantage over the binary encoding in predicting O-glyc-
osylation sites.

In this study, a sequence identity of 40% was initially used
to remove the data redundancy within the datasets. Since
the above prediction results clearly showed that the com-
position of amino acid pairs surrounding O-glycosylation
sites is more important than the sequence of the flanking
segments, it would be interesting to check the results
when the amino acid composition is used for exclusion of
similar sites. To perform such a computational experi-
ment, a 0.95 correlation coefficient was used as the cut-off
to filter our datasets (i.e. in case the correlation coefficient
of any two sequence segments' amino-acid composition is

larger than 0.95, only one segment is kept), and the other
procedures were the same as the sequence identity based
filtration. After the filtration, the final positive dataset
including 85 glycosylated S and 164 glycosylated T sites
and the final negative dataset containing 938 non-glyco-

ROC curves of O-glycosylation site prediction based on bal-anced datasetsFigure 2
ROC curves of O-glycosylation site prediction based 
on balanced datasets. (A) Prediction of O-glycosylated S 
sites. (B) Prediction of O-glycosylated T sites. No feature 
selection was carried out for the CKSAAP encoding.
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Table 4: Performance of S+T predictora

Datasetsb Encoding Sn (%) Sp (%) Ac (%) MCC

1:1 CKSAAPc,d 82.9 ± 1.3 83.4 ± 1.8 83.2 ± 1.6 0.667 ± 0.033
1:5 CKSAAPc,d 63.7 ± 1.7 95.1 ± 0.3 89.8 ± 0.4 0.617 ± 0.017

a In this predictor, the datasets of S and T sites were combined to train a prediction model. Therefore, the O-glycosylated S/T sites can be predicted 
in one predictor. bThe predictor was trained and tested in datasets with two different ratios of O-glycosylation and non-glycosyaltion sites (i.e. 1:1 
and 1:5). cThe corresponding measurement was represented as the average value ± standard deviation. dNo feature selection method was applied.
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sylated S and 1494 non-glycosylated T sites were
obtained. The same prediction method and performance
assessment were carried out on the new datasets. The
results showed that the performance of CKSAAP encoding
is better than the binary encoding (+4.6% and +4.1%
accuracy improvement in predicting S and T sites) (cf.
Table 5). It is confirmed that the CKSAAP encoding is
more powerful than the binary encoding in predicting O-
glycosylation sites.

Why the CKSAAP encoding is better than the binary
encoding in predicting O-glycosylation sites? The ques-
tion may be answered from the following aspects. The
binary encoding clearly characterizes amino acids in dif-
ferent positions surrounding a potential glycosylation
site, but it is weak in reflecting the coupling effect of
amino acid pairs at different positions. On the other
hand, the CKSAAP pays attention on the correlation of
amino acid pairs at different positions, but position spe-
cific amino acid information can not be inferred from the
CKSAAP alone. It has been well known that there was no
consensus motif identified for the neighbouring residues
around O-glycosylation sites, but some frequently
occurred amino acids were observed. Therefore, the
CKSAAP encoding is particularly suitable for the predic-
tion of O-glycosylation. Additionally, a similar conforma-
tion may be generally required by O-glycosylation sites.
For example, it has been well established that O-glycosyla-
tion sites are preferred in coil or turn regions either situ-
ated near the termini of proteins, or in linker regions
between domains [8]. The CKSAAP encoding can ele-
gantly reflect short-range interactions of amino acids and
it is very informative in predicting the local conformation
of a sequence fragment [25]. That is probably another rea-
son why the CKSAAP encoding can surpass the binary
encoding in predicting O-glycosylation sites.

Comparison of CKSAAP_OGlySite with other predictors
The proposed CKSAAP_OGlySite method was bench-
marked against NetOGlyc 3.1 [8], one of the best O-glyc-
osylation site predictors. The benchmark was based on 1:5
datasets, almost the same ratio as used in NetOGlyc 3.1.
To perform a comparison, all the testing examples in 1:5
datasets were submitted to the NetOGlyc 3.1 server [31]
and the average prediction accuracy was also calculated.

The performance of our method is significantly better
than that of NetOGlyc 3.1 by showing about 0.102 and
0.059 higher MCC value in predicting O-glycosylation S
and T sites, respectively (cf. Table 2). It should be pointed
out that some testing examples were possibly already
selected in training NetOGlyc 3.1. Since the developers of
NetOGlyc 3.1 did not distribute their training data set
publicly, we were not able to exclude these examples from
the analysis. In case the comparison is based on a com-
pletely independent dataset, the increased accuracy
resulted from our method may be more significant. As
reported in the paper of NetOGlyc 3.1 [8], different
encoding schemes were jointly employed, including the
binary encoding, predicted structural information and
evolutionary information inferred from PSI-BLAST search.
Noted that the structural properties used in NetOGlyc 3.1
were predicted from the sequence information with the
assistance of other programs, the major input of
NetOGlyc 3.1 is the sequence context of O-glycosylation

ROC curves of O-glycosylation site prediction based on 1:5 datasetsFigure 3
ROC curves of O-glycosylation site prediction based 
on 1:5 datasets. (A) Prediction of O-glycosylated S sites. 
(B) Prediction of O-glycosylated T sites. No feature selection 
was carried out for the CKSAAP encoding.
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sites and the corresponding evolutionary information.
The sequence conservation is not highly required for O-
glycosylation sites, the power of evolutionary information
is limited [6]. Using the current training and testing data-
sets, we also benchmarked the evolutionary information
based encoding, and the result is only slightly better than
that of binary encoding (data not shown). Therefore, it is
reasonable that our CKSAAP_OGlySite is able to provide
better performance than NetOGlyc 3.1.

The proposed CKSAAP_OGlySite method was also bench-
marked against OGlyC method, a SVM-based O-glyco-
sylation site predictor [18]. When trained and tested in
balanced datasets, OGlyC based on the binary encoding
scheme reached an accuracy of 85.0% [18]. Using the sim-
ilar strategy for selecting the positive and negative sites,
the same ratio of positive and negative sites (1:1), the
same encoding scheme, window size (i.e. 2n+1 = 41) and
machine learning method (i.e. SVM), the prediction accu-
racy of our method based on the binary encoding is much
less impressive (about 78.0% accuracy in predicting S sites
and 76.6% accuracy in predicting T sites) (cf. Table 1). The
selection of training dataset in our method is based on a
newer version of the Swiss-Prot database. The accuracy
difference may be resulted from the different selection of
datasets, especially the selection of negative sites. Using
the same datasets and the same cross-validation, it has
been clearly proved that the CKSAAP encoding based SVM
model has a much higher accuracy than that of the binary
encoding. Given the same datasets, the performance of
our CKSAAP_OGlySite should be better than that of
OGlyC.

With more and more O-glycosylation sites experimentally
verified, we hope some standard training and testing data-
sets will be available in the near future. Thus, different
prediction methods can be reliably benchmarked. Mean-
while, some well-established strategies in assessing differ-
ent protein structure prediction methods (e.g. Live-Bench
[32] and EVA [33]) should also be considered in evaluat-
ing different O-glycosylation site predictors.

Conclusion
A competitive mucin-type O-glycosylation site predictor
named as CKSAAP_OGlySite has been developed in the
present study. The proposed CKSAAP_OGlySite demon-
strated higher prediction accuracy than some other exist-
ing predictors, although the overall accuracy is still not
satisfactory and there is possibility to develop more accu-
rate predictors in the foreseeable future. With the ability of
reflecting the characteristics of the sequence surrounding
the O-glycosylation sites, the CKSAAP encoding has been
proved to be particularly suitable for the prediction of O-
glycosylation sites. By using other state-of-the-art machine
learning methods as well as combining other encoding
schemes, it is expected the CKSAAP encoding can play an
important role in developing new O-glycosylation site
predicting systems.

To facilitate the biological community, a web-server of
CKSAAP_OGlySite was constructed, which can be used for
proteome-wide O-glycosylation site prediction. Since the
training dataset used in the current method is merely
based on a limited number of experimentally verified O-
glycosylated proteins, it should be pointed out that the
performance for proteome-wide prediction may be less
impressive in comparison to the accuracy reported in this
paper. On the other hand, if we have the prior knowledge
that query proteins are known to be O-glycosylated, the
prediction of such proteins may result in an expected
accuracy close to the value reported in this paper.

Methods
Datasets
The experimentally validated mucin-type O-glycosylation
sites from mammalian proteins were extracted from the
Swiss-Prot database (Release 52.4)[30], which contains
103 proteins covering 125 S and 242 T sites, and were
compiled into two positive datasets (Pos_S and Pos_T).
Each site within the datasets is represented by a sequence
fragment of 41 amino acids, where S or T is in the central
position. For the sites located in N- or C-terminus, the
number of upstream or downstream residues may be less
than 20. To ensure a sequence fragment with a unified

Table 5: Prediction performance based on the datasets filtered by amino acid compositiona,b

Site Encoding scheme Sn (%) Sp (%) Ac (%) MCC

S Binaryc 73.9 ± 3.8 83.1 ± 5.9 78.5 ± 3.2 0.590 ± 0.068
CKSAAPc,d 79.3 ± 2.0 86.8 ± 2.0 83.1 ± 1.8 0.677 ± 0.032

T Binaryc 77.7 ± 2.7 83.1 ± 3.0 80.4 ± 2.5 0.612 ± 0.052
CKSAAPc,d 81.1 ± 1.8 88.0 ± 1.1 84.5 ± 1.1 0.699 ± 0.023

a The predictors were based on datasets with a 1:1 ratio of O-glycosylation to non-glycosylation sites. bThe cut-off value of correlation coefficient 
between any two sequence segments' amino acid composition was set as 0.95. cThe corresponding measurement was represented as the average 
value ± standard deviation. dNo feature selection method was applied.
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length, we assigned a non-existing amino acid O to fill in
the corresponding positions. Thus, 21 different amino
acids are considered in the present study to reflect the
sequence context of a glycosylation site, which are ordered
as ACDEFGHIKLMNPQRSTVWYO. To remove redundant
fragments within the datasets, the initial datasets (Pos_S
and Pos_T) were further filtered by a 40% sequence iden-
tity cut-off. Since each site is represented by a sequence
fragment with fixed length, the sequence identity is sim-
ply based on the match between two fragments (i.e. no-
gap alignment). Considering the middle residue in each
fragment is always the same (S/T), the central position is
excluded when calculating the sequence identity, mean-
ing that only sixteen residues are maximally allowed to be
identically matched in the alignment. The similar filtra-
tion method was previously used for the preparation of
training datasets in the prediction of phosphorylation
sites [34,35]. Thus, our final positive datasets included
116 S and 212 T respectively [see Additional file 1 and
Additional file 2]. It should be emphasized that the anno-
tation of Swiss-Prot was regarded as a golden standard for
selecting positive O-glycosylation sites, and the original
publications for these O-glycosylation sites were not
checked. Due to the potential annotation errors, the qual-
ity of the compiled O-glycosylation dataset was inevitably
limited by the knowledge of Swiss-Prot database.

All S and T residues in these 103 protein sequences with
no annotation related to O-glycosylation site were
selected as negative sites. In the present study, 1506 non-
glycosylated S residues and 2529 non-glycosylated T resi-
dues were initially selected, and were further compiled
into two negative datasets (Neg_S and Neg_T). Likewise,
we also filtered the negative data sets using a 40%
sequence identity to avoid the redundancy. Furthermore,
the negative site sharing over 40% identity with any of the
positive sites was also discarded. Finally, we got 1153
non-glycosylated S and 1702 non-glycosylated T residues
[see Additional file 3 and Additional file 4].

Feature construction
A new feature construction, the composition of k-spaced
amino acid pairs (CKSAAP) based encoding, was
employed. The detailed procedures are described as fol-
lows. Generally, a sequence fragment of 2n+1 amino acids
(i.e. the window size is equal to 2n+1, and the maximal
window size is 41 as defined in the section of Datasets) is
used to define a glycosylation site. For k-spaced amino
acid pairs (i.e. pairs that are separated by k other amino
acids) within this sequence fragment, there are 441 possi-
ble types (AA, AC, AD, ..., OO). Then, a feature vector of
that size is used to represent the composition of these
pairs, which can be described as

(cAA cAC cAD ... cOO)441 (1)

The value of each feature denotes the composition of the
corresponding amino acid pair in the fragment. For
instance, if an AD pair occurs m times in this fragment, the
corresponding value in the vector (i.e.cAD) is equal to m.
The amino acid pairs for k = 0, 1, ..., kmax are jointly con-
sidered in this study, so the total dimension of the pro-
posed feature vector is 441 × (kmax+1).

To benchmark the proposed CKSAAP encoding, the pre-
diction based on the binary encoding was also carried out.
In this encoding scheme, each amino acid is represented
by a 21-dimensional binary vector, e.g. A
(100000000000000000000), C
(010000000000000000000), ..., O
(000000000000000000001), etc. For a query O-glyco-
sylation site represented by a fragment of 2n+1 residues,
the central residue is always S/T, which is not necessary to
be taken into account. Therefore, the total dimension of
the proposed binary feature vector is 21 × 2n.

Feature selection
Due to the high dimensionality as well as the sparse
nature of the CKSAAP encoding, the dimensionality
reduction seems to be required. CC- and IE-based dimen-
sionality reduction methods, previously reported by Chen
et al. [25], were employed in this work.

CC-based feature selection
For each variable from the CKSAAP based feature vector
(X) and the known predicted variable (Y), the correlation
coefficient cor(X,Y) is computed. The value of cor(X,Y) is
in the range from -1 to 1. Higher value of | cor(X,Y)|
means the corresponding variable X is more significantly
correlated with Y. To reduce the dimensionality, therefore
only those variables with higher | cor(X,Y)| were kept.

IE-based feature selection
For any variable X from the CKSAAP encoding, its infor-
mation entropy is defined as

Where {xi} represents a set of values occurred in X, and
P(xi) denotes the prior probability of xi. The conditional
entropy of X under the condition of Y is defined as

Where P(xi|yj) is the posterior probability of xi given the
value yj of Y. Then, information gain IG(X|Y) is given by

IG(X|Y) = I(X) - I(X|Y) (4)

I X P x P xi i

i

( ) ( ) log ( ( ))= −∑ 2 (2)

I X Y P y P x y P x yj i j

i

i j

j

( | ) ( ) ( | ) log ( ( | ))= − ∑∑ 2

(3)
Page 9 of 12
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:101 http://www.biomedcentral.com/1471-2105/9/101
The information gain IG(X|Y) indicates the additionally
increased information about X provided by Y [25]. For
any two features (X1 and X2) from the CKSAAP encoding,
if IG(X1|Y) > IG(X2|Y), the feature Y is regarded as more
correlated with X1 than X2. To reduce the dimensionality,
therefore the features with higher IG are selected.

Support Vector Machine (SVM)

The SVM is a machine-learning algorithm for two classes
of classification with the goal to find a rule that best maps
each member of training set to the correct classification
[36], which has been widely used in the field of protein
bioinformatics [37-41]. In linearly separable cases, SVM
constructs a hyperplane that separates two different
groups of feature vectors in the training set with a maxi-
mum margin. The orientation of a test sample relative to
the hyperplane gives the predicted score, and hence the
predicted class can be derived. The implementation of
SVM algorithm used in this work was SVM-Light [42]. The
applied kernel functions were the linear function, polyno-
mial function, and radial basis function (RBF). The selec-
tion of the kernel function parameters is important for
SVM training and testing, because it implicitly determines
the structure of the high dimensional feature space when
constructing the optimal hyperplane [43]. In the current
study, several parameters need to be determined in
advance to optimize SVM training, such as the regulariza-
tion parameter C, which controls the trade-off between

training error and margin, the width parameter γ in the

RBF kernel , and the

degree d in the polynomial kernel

. Other than changing the ker-

nel functions and the necessary regulation of the kernel
function parameters, the algorithm was run with the
default settings in a Linux Platform.

Performance assessment
In this study, two subsets (Neg_S_Sub and Neg_T_Sub)
were randomly constructed from Neg_S and Neg_T to
have the same size as Pos_S and Pos_T, respectively. Each
set of Pos_S and Pos_T with the corresponding negative
sets of Neg_S_Sub and Neg_T_Sub was used to construct
predictors for S and T sites. Then, a 10-fold cross-valida-
tion was performed. To check the difference of predictive
accuracy caused by the different choices of negative data
sets, the above 10-fold cross-validation was repeated 5
times by randomly changing the negative datasets (i.e.
Neg_S_Sub and Neg_T_Sub). Finally, the overall perform-
ance was averaged over these 5 times of 10-fold cross-val-
idation tests. Thus, the current cross-validation generally

reflected the overall performance of the proposed method
over the selected data sets. The same training and testing
procedures were used in assessing the binary encoding
based predictor.

Similar to the above procedures, datasets with 1:5 ratio of
positive to negative sites were also used to train the pro-
posed predictors. Then, 10-fold cross-validation tests were
carried out. The negative dataset was also randomly
changed for five times and the average prediction accuracy
was obtained.

Four measurements, i.e. Ac, Sn, Sp and MCC, were used to
evaluate the prediction performance with definitions as
below:

and

TP, FP, FN and TN denote true positives, false positives,
false negatives and true negatives.

The prediction accuracy was also measured by using the
ROC analysis [44,45]. For a prediction method, the curve
of ROC plots true positive rate (i.e. Sn) as a function of
false positive rate (i.e. 1-Sp) for all possible thresholds.
The AUC was also calculated to provide a comprehensive
understanding for the proposed prediction method. Gen-
erally, the closer the AUC value is to 1, the better the pre-
diction method is.

Availability and requirements
Project Name: CKSAAP_OGlySite predictor

Project home page: http://bioinformatics.cau.edu.cn/
zzd_lab/CKSAAP_OGlySite/

Operating system: Online service is web based; local ver-
sion of the software [see Additional file 5] should be run
in Linux platform.

Programming language: Perl.

K X X X Xi j i j( , ) exp( )= − −g
2

K X X Xi i j
d( ( ),X ) 1j = • +

Ac
TP TN

TP FP TN FN
= +

+ + +
, (5)

Sn
TP

TP FN
=

+
, (6)

Sp
TN

TN FP
=

+
, (7)

MCC
TP TN FN FP

TP FN TN FP TP FP TN FN
= × − ×

+ × + × + × +
( ) ( )

( ) ( ) ( ) ( )
.

(8)
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License: Free.

Any restrictions to use by non-academics: None.

Authors' contributions
YZC collected data, wrote codes and developed the web
server. YRT and ZYS participated in the research design,
method assessment and preparation of the manuscript.
ZZ directed the research and wrote the manuscript. All
authors read and approved the final manuscript.

Additional material

Acknowledgements
The authors thank Dr. Carlos A Canchaya at Parma University, Italy and Dr. 
Ziad Ramadan at Nestlé Purina Petcare PTC, USA for their critical reading 
on this manuscript. The authors are also indebted to Dr. Zhen Su (China 
Agricultural University) and his lab members for the excellent assistance in 

setting up the web server. The authors are thankful to the developers of 
NetOGlyc 3.1 for making their software free available to the community. 
YZC is also grateful to Dr. Ke CHEN (University of Alberta, Canada) for 
helpful discussion on the dimensionality reduction methods. This research 
was supported by the Program for New Century Excellent Talents in Uni-
versity (NCET-06-0116).

References
1. Spiro RG: Protein glycosylation: nature, distribution, enzy-

matic formation, and disease implications of glycopeptide
bonds.  Glycobiology 2002, 12:43R-56R.

2. Jensen ON: Interpreting the protein language using proteom-
ics.  Nat Rev Mol Cell Biol 2006, 7:391-403.

3. Walsh G, Jefferis R: Post-translational modifications in the con-
text of therapeutic proteins.  Nat Biotechnol 2006, 24:1241-1252.

4. Nakai K: Review: prediction of in vivo fates of proteins in the
era of genomics and proteomics.  J Struct Biol 2001, 134:103-116.

5. Ofran Y, Punta M, Schneider R, Rost B: Beyond annotation trans-
fer by homology: novel protein-function prediction methods
to assist drug discovery.  Drug Discov Today 2005, 10:1475-1482.

6. Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S: Pre-
diction of post-translational glycosylation and phosphoryla-
tion of proteins from the amino acid sequence.  Proteomics
2004, 4:1633-1649.

7. Hang HC, Bertozzi CR: The chemistry and biology of mucin-
type O-linked glycosylation.  Bioorg Med Chem 2005,
13:5021-5034.

8. Julenius K, Molgaard A, Gupta R, Brunak S: Prediction, conserva-
tion analysis, and structural characterization of mammalian
mucin-type O-glycosylation sites.  Glycobiology 2005, 15:153-164.

9. Hanish FG: O-glycosylation of the mucin type.  Biol chem 2001,
382:143-149.

10. McEver RP, Cummings RD: Perspectives series: cell adhesion in
vascular biology. Role of PSGL-1 binding to selectins in leu-
kocyte recruitment.   J Chin Invest 1997, 100:485-491.

11. Elhammer AP, Poorman RA, Brown E, Maggiora LL, Hoogerheide JG,
Kezdy FJ: The specificity of UDP-GalNAc:polypeptide N-
acetylgalactosaminyltransferase as inferred from a database
of in vivo substrates and from the in vitro glycosylation of
proteins and peptides.  J Biol Chem 1993, 268:10029-10038.

12. Chou KC: A sequence-coupled vector-projection model for
predicting the specificity of GalNAc-transferase.  Protein Sci
1995, 4:1365-1383.

13. Chou KC, Zhang CT, Kezdy FJ, Poorman RA: A vector projection
method for predicting the specificity of GalNAc-transferase.
Proteins 1995, 21:118-126.

14. Hansen JE, Lund O, Engelbrecht J, Bohr H, Nielsen JO, Hansen J-ES,
Brunak S: Prediction of O-glycosylation of mammalian pro-
teins: specificity patterns of UDP-GalNac:polypeptide N-
acetylgalactosaminyltransferase.  Biochem J 1995, 308:801-813.

15. Cai YD, Chou KC: Artificial neural network model for predict-
ing the specificity of GalNAc-transferase.  Anal Biochem 1996,
243:284-285.

16. Hansen JE, Lund O, Tolstrup N, Gooley AA, Williams KL, Brunak S:
NetOglyc: prediction of mucin type O-glycosylation sites
based on sequence context and surface accessibility.  Glycoconj
J 1998, 15:115-130.

17. Cai YD, Liu XJ, Xu XB, Chou KC: Support vector machines for
predicting the specificity of GalNAc-transferase.  Peptides
2002, 23:205-208.

18. Li S, Liu B, Zeng R, Cai Y, Li Y: Predicting O-glycosylation sites
in mammalian proteins by using SVMs.  Comput Biol Chem 2006,
30:203-208.

19. Gerken TA, Owens CL, Pasumarthy M: Determination of the site-
specific O-glycosylation pattern of the porcine submaxillary
mucin tandem repeat glycopeptide. Model proposed for the
polypeptide:galnac transferase peptide binding site.  J Biol
Chem 1997, 272:9709-9719.

20. Neumann GM, Marinaro JA, Bach LA: Identification of O-glyco-
sylation sites and partial characterization of carbohydrate
structure and disulfide linkages of human insulin-like growth
factor binding protein 6.  Biochemistry 1998, 37:6572-6585.

21. Sparrow LG, Gorman JJ, Strike PM, Robinson CP, McKern NM, Epa
VC, Ward CW: The location and characterisation of the O-

Additional file 1
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sylated S sites used in training and testing the proposed 
CKSAAP_OGlySite predictor.
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[http://www.biomedcentral.com/content/supplementary/1471-
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Additional file 2
O-glycosylated T sites. This file contains the positive dataset of O-glyco-
sylated T sites used in training and testing the proposed 
CKSAAP_OGlySite predictor.
Click here for file
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Additional file 3
Non-glycosylated S sites. This file contains the negative dataset of S sites 
used in training and testing the proposed CKSAAP_OGlySite predictor.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-101-S3.txt]

Additional file 4
Non-glycosylated T sites. This file contains the negative dataset of T sites 
used in training and testing the proposed CKSAAP_OGlySite predictor.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-101-S4.txt]

Additional file 5
The source code of CKSAAP_OGlySite. The data provided contain the 
source code of CKSAAP_OGlySite, in which a file (readme.txt) address-
ing how to use CKSAAP_OGlySite is included.
Click here for file
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